Abstract
Mobile robots are rapidly developing and gaining in competence, but the potential of available hardware still far outstrips our ability to harness. Domain-specific applications are most successful due to customised programming tailored to a narrow area of application. Resulting systems lack extensibility and autonomy, leading to increased cost of development.This thesis investigates the possibility of designing and implementing a general framework capable of simultaneously coordinating multiple tasks that can be added or removed in a plug and play manner. A homeostatic mechanism is proposed for resolving the contentions inevitably arising between tasks competing for the use of the same robot actuators.
In order to evaluate the developed system, demonstrator tasks are constructed to reach a goal location, prevent collision, follow a contour around obstacles and balance a ball within a spherical bowl atop the robot.
Experiments show preliminary success with the homeostatic coordination mechanism but a restriction to local search causes issues that preclude conclusive evaluation. Future work identifies avenues for further research and suggests switching to a planner with the sufficient foresight to continue evaluation.
Date of Award | 29 Jul 2020 |
---|---|
Original language | English |
Awarding Institution |
|
Supervisor | Michael Kenneth Weir (Supervisor) |
Access Status
- Full text open