Zonation of gluconeogenesis, ketogenesis and intracellular pH in livers from normal and diabetic ketoacidic rats: evidence for intralobular redistribution of metabolic events in ketoacidosis

Shamus P. Burns, Robert D. Cohen, Richard A. Iles, Rosemary Anne Bailey, Mina Desai, Jocelyn P. Germain, Thomas C. H. Going

Research output: Contribution to journalArticlepeer-review

Abstract

The intralobular distribution of metabolism was examined in the livers from rats with severe diabetic ketoacidosis (DKA), perfused at pH 6.8, and compared with that in livers from normal starved animals perfused at either pH 7.4 or 6.8. With lactate and palmitate as substrates, the perivenous uptake of periportally synthesized glucose seen in normal livers at pH 7.4 was abolished during DKA; indeed, gluconeogenesis was most active in the perivenous region. Whereas in normal livers perfused at pH 7.4 the periportal region showed a markedly elevated intracellular pH (pH_1) compared with the perivenous zone, this distribution of pH_1 was reversed in DKA, with an intermediate distribution in normal livers perfused at pH 6.8. 3-Hydroxybutyrate was generated throughout the lobule. Some acetoacetate generate periportally was converted to 3-hydroxybutyrate more perivenously. A steep gradient of oxygen uptake along the radius of the lobule was apparent in all three groups; oxygen uptake was greatly decreased perivenously despite adequate oxygen supply. These findings are consistent with our previous observations of the lobular co-location of high pH_1 and gluconeogenesis, and might offer an explanation of how high gluconeogenic rates can continue in spite of severe systemic acidosis in DKA. The findings provide direct evidence for a marked redistribution of intralobular metabolism in DKA.
Original languageEnglish
Pages (from-to)273-280
Number of pages8
JournalBiochemical Journal
Volume343
Publication statusPublished - 1999

Keywords

  • diabetic ketoacidosis
  • hepatocyte heterogeneity
  • streptozotocin

Fingerprint

Dive into the research topics of 'Zonation of gluconeogenesis, ketogenesis and intracellular pH in livers from normal and diabetic ketoacidic rats: evidence for intralobular redistribution of metabolic events in ketoacidosis'. Together they form a unique fingerprint.

Cite this