WWOX gene expression abolishes ovarian cancer tumorigenicity in vivo and decreases attachment to Fibronectin via Integrin alpha(3)

Charlie Gourley, Adam J. W. Paige, Karen J. Taylor, Carol Ward, Barbara Kuske, Jieqing Zhang, Mingjun Sun, Szymon Janczar, David J. Harrison, Morwenna Muir, John F. Smyth, Hani Gabra

Research output: Contribution to journalArticlepeer-review

78 Citations (Scopus)

Abstract

The WW domain-containing oxidoreductase (WWOX) gene Is located at FRA16D, a common fragile site involved in human cancer. Targeted deletion of Wwox in mice causes increased spontaneous tumor incidence, confirming that WWOX is a bona fide tumor suppressor gene. We show that stable transfection of WWOX into human PEO1 ovarian cancer cells, containing homozygous WWOX deletion, abolishes in vivo tumorigenicity, but this does not correlate with alteration of in vitro growth. Rather, WWOX restoration in PEO1, or WWOX overexpression in SKOV3 ovarian cancer cells, results in reduced attachment and migration on fibronectin, an extracellular matrix component linked to peritoneal metastasis. Conversely, siRNA-mediated knockdown of endogenous WWOX in A2780 ovarian cancer cells increases adhesion to fibronectin. In addition, whereas there is no WWOX-dependent difference in cell death in adherent cells, WWOX-transfected cells in suspension culture display a proapoptotic phenotype. We further show that WWOX expression reduces membranous integrin alpha(3) protein but not integrin alpha(3) mRNA levels, and that adhesion of PEO1 cells to fibronectin is predominantly mediated through integrin alpha(3). We therefore propose that WWOX acts as an ovarian tumor suppressor by modulating the interaction between tumor cells and the extracellular matrix and by inducing apoptosis in detached cells. Consistent with this, the suppression of PEO1 tumorigenicity by WWOX can be partially overcome by implanting these tumor cells in Matrigel. These data suggest a possible role for the loss of WWOX in the peritoneal dissemination of human ovarian cancer cells. [Cancer Res 2009;69(11):4835-42]

Original languageEnglish
Pages (from-to)4835-4842
Number of pages8
JournalCancer Research
Volume69
Issue number11
DOIs
Publication statusPublished - 1 Jun 2009

Fingerprint

Dive into the research topics of 'WWOX gene expression abolishes ovarian cancer tumorigenicity in vivo and decreases attachment to Fibronectin via Integrin alpha(3)'. Together they form a unique fingerprint.

Cite this