TY - JOUR
T1 - Wiedemann-Franz law and nonvanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2
AU - Reid, Jean-Philippe
AU - Tanatar, M. A.
AU - Daou, R.
AU - Hu, Rongwei
AU - Petrovic, C.
AU - Taillefer, Louis
PY - 2014/1/23
Y1 - 2014/1/23
N2 - The in-plane thermal conductivity κ and electrical resistivity ρ of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point Hc, at which antiferromagnetic order ends. The thermal and electrical resistivities, w≡L0T/κ and ρ, show a linear temperature dependence below 1 K, typical of the non-Fermi-liquid behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature T∗ ≃ 0.35 K, which depends weakly on H, w(T) and ρ(T) both deviate downward and converge as T → 0. We propose that T* marks the onset of short-range magnetic correlations, persisting beyond H-c. By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at Hc, implying that no fundamental breakdown of quasiparticle behavior occurs in this material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.
AB - The in-plane thermal conductivity κ and electrical resistivity ρ of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point Hc, at which antiferromagnetic order ends. The thermal and electrical resistivities, w≡L0T/κ and ρ, show a linear temperature dependence below 1 K, typical of the non-Fermi-liquid behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature T∗ ≃ 0.35 K, which depends weakly on H, w(T) and ρ(T) both deviate downward and converge as T → 0. We propose that T* marks the onset of short-range magnetic correlations, persisting beyond H-c. By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at Hc, implying that no fundamental breakdown of quasiparticle behavior occurs in this material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.
KW - Phase-transition
KW - Superconductivity
KW - Metals
U2 - 10.1103/PhysRevB.89.045130
DO - 10.1103/PhysRevB.89.045130
M3 - Article
SN - 1098-0121
VL - 89
JO - Physical Review. B, Condensed matter and materials physics
JF - Physical Review. B, Condensed matter and materials physics
IS - 4
M1 - 045130
ER -