Projects per year
Abstract
Why the atmosphere of the Sun is orders of magnitudes hotter than its surface is a long-standing question in solar physics. Over the years, many studies have looked at the potential role of magnetohydrodynamic (MHD) waves in sustaining these high temperatures. In this study, we use 3D MHD simulations to investigate (driven) transverse waves in a coronal loop. As the boundary-driven transverse waves propagate along the flux tube, the radial density profile leads to resonant absorption (or mode coupling) and phase mixing in the boundaries of the flux tube and the large velocity shears are subject to the Kelvin Helmholtz instability (KHI). The combination of these effects leads to enhanced energy dissipation and wave heating. Considering both resonant and non-resonant boundary driving as well as different densities for the flux tube, we show that only wave heating associated with a resonant driver in a lower density loop (with a loop core density ~5x10-13 kg/m-3) is able to balance radiative losses in the loop shell. Changing the model parameters to consider a denser loop or a driver with a non-resonant frequency, or both, leads to cooling of the coronal loop as the energy losses are greater than the energy injection and dissipation rates.
Original language | English |
---|---|
Article number | 85 |
Number of pages | 10 |
Journal | Astrophysical Journal |
Volume | 941 |
Issue number | 1 |
DOIs | |
Publication status | Published - 14 Dec 2022 |
Keywords
- Sun: corona
- Sun: oscillations
Fingerprint
Dive into the research topics of '(When) Can wave heating balance optically thin radiative losses in the corona?'. Together they form a unique fingerprint.-
Solar and Magnetospheric Plasmas: Solar and Magnetospheric Plasmas: Theory and Application
Neukirch, T. (PI), Archontis, V. (CoI), De Moortel, I. (CoI), Hood, A. W. (CoI), Mackay, D. H. (CoI), Parnell, C. E. (CoI) & Wright, A. N. (CoI)
Science & Technology Facilities Council
1/04/22 → 31/03/25
Project: Standard
-
Solar and Magnetospheric: Solar and Magnetospheric Magnetohydrodynamics and Plasmas: Theory and Application
Hood, A. W. (PI), Archontis, V. (CoI), De Moortel, I. (CoI), Mackay, D. H. (CoI), Neukirch, T. (CoI), Parnell, C. E. (CoI) & Wright, A. N. (CoI)
Science & Technology Facilities Council
1/04/19 → 31/03/22
Project: Standard
-
H2020 ERC Consolidator - CORONALDOLLS: CORONALDOLLS
De Moortel, I. (PI)
1/10/15 → 30/09/20
Project: Standard