Abstract
Several RNA virus genera belonging to the Virgaviridae and Flexiviridae families encode proteins organized in a triple gene block (TGB) that facilitate cell-to-cell and long-distance movement. The TGB proteins have been traditionally classified as hordei-like or potex-like based on phylogenetic comparisons and differences in movement mechanisms of the Hordeivirus and Potexvirus spp. However, accumulating data from other model viruses suggests that a revised framework is needed to accommodate the profound differences in protein interactions occurring during infection and ancillary capsid protein requirements for movement. The goal of this article is to highlight common features of the TGB proteins and salient differences in movement properties exhibited by individual viruses encoding these proteins. We discuss common and divergent aspects of the TGB transport machinery, describe putative nucleoprotein movement complexes, highlight recent data on TGB protein interactions and topological properties, and review membrane associations occurring during subcellular targeting and cell-to-cell movement. We conclude that the existing models cannot be used to explain all TGB viruses, and we propose provisional Potexvirus, Hordeivirus, and Pomovirus models. We also suggest areas that might profit from future research on viruses harboring this intriguing arrangement of movement proteins.
Original language | English |
---|---|
Pages (from-to) | 1231-1247 |
Number of pages | 17 |
Journal | Molecular Plant-Microbe Interactions |
Volume | 23 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2010 |
Keywords
- CELL-TO-CELL
- STRIPE-MOSAIC-VIRUS
- YELLOW-VEIN-VIRUS
- LONG-DISTANCE MOVEMENT
- CYSTEINE-RICH PROTEIN
- RNA-BINDING PROPERTIES
- N-TERMINAL REGION
- ACID IN-VITRO
- COAT PROTEIN
- SUBCELLULAR-LOCALIZATION