Abstract
This paper makes a direct contribution to the mathematical theory and practical implementation of interpretable deep fuzzy learning whilst addressing the model interpretability challenge posed by the typical non-interpretable nature of training data. A deep autoencoder, composed of a finite number of stochastic fuzzy filters, is learned using variational Bayes for an efficient representation of high-dimensional feature vectors at different levels of abstraction. The robustness of the deep model towards data outliers is achieved by incorporating heavy-tailed distributed noises in the inference mechanism. The proposed deep stochastic fuzzy autoencoder makes it possible to have an interpretable classification by means of an induced mapping from a non-interpretable feature space to an interpretable parameter space. The mapping induced by our autoencoder can be used to explain the classifier’s predictions by interpreting the non-interpretable high-dimensional feature vectors. The experimental results obtained on various benchmark datasets (e.g., Freiburg Groceries, Caltech-101, Caltech-256, Adobe Panoramas, and MNIST) show that our proposed approach not only outperforms widely used machine learning methods in classification tasks but brings the added value of interpretability as a further advantage.
Original language | English |
---|---|
Article number | 107900 |
Number of pages | 24 |
Journal | Engineering Applications of Artificial Intelligence |
Volume | 132 |
Early online date | 25 Jan 2024 |
DOIs | |
Publication status | Published - Jun 2024 |
Keywords
- Fuzzy model
- Variational Bayesian
- Interpretability
- Classification