Upscaling of co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells: a progress report on a decade of academic-industrial collaboration

Robert Price, Mark Cassidy, Jan G. Grolig, Gino G. Longo, Ueli G. Weissen, Andreas G Mai, John T. S. Irvine

Research output: Contribution to journalReview articlepeer-review

1 Citation (Scopus)

Abstract

Solid oxide fuel cell (SOFC) stack technology offers a reliable, efficient, and clean method of sustainable heat and electricity co‐generation that can be integrated into micro‐combined heat and power (µ‐CHP) units for use in residential and small commercial environments. Recent years have seen the successful market introduction of several SOFC‐based systems, however, manufacturers still face some challenges in improving the durability and tolerance of traditional Ni‐based ceramic‐metal (cermet) composite anodes to harsh operating conditions, such as redox and thermal cycling, overload exposure, sulfur poisoning and coking, in unprocessed natural gas feeds, for long time periods. Creating a “silver bullet” anode material that solves all of these issues has been the focus of SOFC research of the past 20 years, however, very few materials are reported to address these issues at the button cell scale and, subsequently, successfully scale to industrial SOFC stacks. Therefore, the purpose of this review is to provide a “powder to power” overview of the academic‐industrial cross‐collaborative development of a novel, highly robust anode material, from the fundamental materials science performed in academic laboratories to the successful upscaling and incorporation into short stacks at a well‐established, commercial manufacturer of SOFC systems in an industrial setting.
Original languageEnglish
Article number2003951
Number of pages21
JournalAdvanced Energy Materials
VolumeEarly View
Early online date12 Feb 2021
DOIs
Publication statusE-pub ahead of print - 12 Feb 2021

Keywords

  • Catalyst impregnation
  • Collaboration
  • Fuel cell anodes, solid oxides
  • Stack testing
  • Upscaling

Fingerprint

Dive into the research topics of 'Upscaling of co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells: a progress report on a decade of academic-industrial collaboration'. Together they form a unique fingerprint.

Cite this