Abstract
Cation disorder is a phenomenon that is becoming increasingly important for the design of high-energy lithium transition metal oxide cathodes (LiMO2) for Li-ion batteries. Disordered Li-excess rocksalts have recently been shown to achieve high reversible capacity, while in operando cation disorder has been observed in a large class of ordered compounds. The voltage slope (dVdxLi) is a critical quantity for the design of cation-disordered rocksalts, as it controls the Li capacity accessible at voltages below the stability limit of the electrolyte (∼4.5-4.7 V). In this study, we develop a lattice model based on first principles to understand and quantify the voltage slope of cation-disordered LiMO2. We show that cation disorder increases the voltage slope of Li transition metal oxides by creating a statistical distribution of transition metal environments around Li sites, as well as by allowing Li occupation of high-voltage tetrahedral sites. We further demonstrate that the voltage slope increase upon disorder is generally smaller for high-voltage transition metals than for low-voltage transition metals due to a more effective screening of Li-M interactions by oxygen electrons. Short-range order in practical disordered compounds is found to further mitigate the voltage slope increase upon disorder. Finally, our analysis shows that the additional high-voltage tetrahedral capacity induced by disorder is smaller in Li-excess compounds than in stoichiometric LiMO2 compounds.
Original language | English |
---|---|
Pages (from-to) | 5373-5383 |
Number of pages | 11 |
Journal | Chemistry of Materials |
Volume | 28 |
Issue number | 15 |
Early online date | 13 Jul 2016 |
DOIs | |
Publication status | Published - 9 Aug 2016 |