Ultrafast adiabatic manipulation of slow light in a photonic crystal

T. Kampfrath, Daryl Matthew Beggs, Tom P White, A. Melloni, Thomas Fraser Krauss, L. Kuipers

Research output: Contribution to journalArticlepeer-review

Abstract

We demonstrate by experiment and theory that a light pulse propagating through a Si-based photonic-crystal waveguide is adiabatically blueshifted when the refractive index of the Si is reduced on a femtosecond time scale. Thanks to the use of slow-light modes, we are able to shift a 1.3-ps pulse at telecom frequencies by 0.3 THz with an efficiency as high as 80% in a waveguide as short as 19 mu m. An analytic theory reproduces the experimental data excellently, which shows that adiabatic dynamics are possible even on the femtosecond time scale as long as the external stimulus conserves the spatial symmetry of the system.

Original languageEnglish
Number of pages6
JournalPhysical Review. A, Atomic, molecular, and optical physics
Volume81
Issue number4
DOIs
Publication statusPublished - 27 Apr 2010

Keywords

  • Transitions
  • Resonator

Fingerprint

Dive into the research topics of 'Ultrafast adiabatic manipulation of slow light in a photonic crystal'. Together they form a unique fingerprint.

Cite this