TY - JOUR
T1 - Towards automated mapping and monitoring of potentially dangerous glacial lakes in Bhutan Himalaya using Sentinel-1 Synthetic Aperture Radar data
AU - Wangchuk, Sonam
AU - Bolch, Tobias
AU - Zawadzki, Jarosław
PY - 2019/2/12
Y1 - 2019/2/12
N2 - The majority of glacial lakes around the world are located in remote and hardly accessible regions. The use of remote sensing data is therefore of high importance to identify and assess their potential hazards. However, the persistence of cloud cover, particularly in high mountain areas such as the Himalayas, limits the temporal resolution of optical satellite data with which we can monitor potentially dangerous glacial lakes (PDGLs). The ability of Synthetic Aperture Radar (SAR) satellites to collect data, irrespective of weather and at day or night, facilitates monitoring of PDGLs by without compromising temporal resolution. In this study, we present a semi-automated approach, based on a radar signal intensity threshold between water and non-water feature classes followed by post-processing including elevations, slopes, vegetation and size thresholds, to delineate glacial lakes in Sentinel-1 SAR images in Bhutan Himalaya. We show the capability of our method to be used for delineating and monitoring glacial lakes in Bhutan Himalaya by comparing our results to 10 m resolution Sentinel-2 multispectral data, field survey data, meteorological data, and a time series of monthly images from January to December 2016 of two lakes. Sentinel-1 SAR data can, moreover, be used for detecting lake surface area changes and open water area variations, at temporal resolution of six days, providing substantial advantages over optical satellite data to continuously monitor PDGLs.
AB - The majority of glacial lakes around the world are located in remote and hardly accessible regions. The use of remote sensing data is therefore of high importance to identify and assess their potential hazards. However, the persistence of cloud cover, particularly in high mountain areas such as the Himalayas, limits the temporal resolution of optical satellite data with which we can monitor potentially dangerous glacial lakes (PDGLs). The ability of Synthetic Aperture Radar (SAR) satellites to collect data, irrespective of weather and at day or night, facilitates monitoring of PDGLs by without compromising temporal resolution. In this study, we present a semi-automated approach, based on a radar signal intensity threshold between water and non-water feature classes followed by post-processing including elevations, slopes, vegetation and size thresholds, to delineate glacial lakes in Sentinel-1 SAR images in Bhutan Himalaya. We show the capability of our method to be used for delineating and monitoring glacial lakes in Bhutan Himalaya by comparing our results to 10 m resolution Sentinel-2 multispectral data, field survey data, meteorological data, and a time series of monthly images from January to December 2016 of two lakes. Sentinel-1 SAR data can, moreover, be used for detecting lake surface area changes and open water area variations, at temporal resolution of six days, providing substantial advantages over optical satellite data to continuously monitor PDGLs.
U2 - 10.1080/01431161.2019.1569789
DO - 10.1080/01431161.2019.1569789
M3 - Article
AN - SCOPUS:85061607625
SN - 0143-1161
VL - In press
JO - International Journal of Remote Sensing
JF - International Journal of Remote Sensing
ER -