Titania-promoted carboxylic acid alkylations of alkenes and cascade addition-cyclizations

D.W. Manley, R.T. McBurney, J.C. Walton, A. Mills, C. O'Rourke, Philip Miller

Research output: Contribution to journalArticlepeer-review

53 Citations (Scopus)
9 Downloads (Pure)

Abstract

Photochemical reactions employing TiO and carboxylic acids under dry anaerobic conditions led to several types of C-C bond-forming processes with electron-deficient alkenes. The efficiency of alkylation varied appreciably with substituents in the carboxylic acids. The reactions of aryloxyacetic acids with maleimides resulted in a cascade process in which a pyrrolochromene derivative accompanied the alkylated succinimide. The selectivity for one or other of these products could be tuned to some extent by employing the photoredox catalyst under different conditions. Aryloxyacetic acids adapted for intramolecular ring closures by inclusion of 2-alkenyl, 2-aryl, or 2-oximinyl functionality reacted rather poorly. Profiles of reactant consumption and product formation for these systems were obtained by an in situ NMR monitoring technique. An array of different catalyst forms were tested for efficiency and ease of use. The proposed mechanism, involving hole capture at the TiO surface by the carboxylates followed by CO loss, was supported by EPR spectroscopic evidence of the intermediates. Deuterium labeling indicated that the titania likely donates protons from surface hydroxyl groups as well as supplying electrons and holes, thus acting as both a catalyst and a reaction partner.
Original languageEnglish
Pages (from-to)1386-1398
Number of pages13
JournalThe Journal of Organic Chemistry
Volume79
Issue number3
DOIs
Publication statusPublished - 7 Feb 2014

Keywords

  • TiO2
  • Carboxylic acids
  • Alkenes
  • Aryloxyacetic acids
  • Photoredox catalyst
  • NMR monitoring

Fingerprint

Dive into the research topics of 'Titania-promoted carboxylic acid alkylations of alkenes and cascade addition-cyclizations'. Together they form a unique fingerprint.

Cite this