Abstract
Enthalpies of chalcogen atom transfer to Mo(N[t-Bu]Ar)(3), where Ar = 3,5-C6H3Me2, and to IPr (defined as bis-(2,6-isopropylphenyl)imidazol-2-ylidene) have been measured by solution calorimetry leading to bond energy estimates (kcal/mol) for EMo(N[t-Bu]Ar)(3) (E = S, 115; Se, 87; Te, 64) and EIPr (E = S, 102; Se, 77; Te, 53). The enthalpy of S-atom transfer to PMo(N[t-Bu]Ar)(3) generating SPMo(N[t-Bu]Ar)(3) has been measured, yielding a value of only 78 kcal/mol. The kinetics of combination of Mo(N[t-Bu]Ar)(3) with SMo(N[t-Bu]Ar)(3) yielding (mu-S)[Mo(N[t-Bu]Ar)(3)](2) have been studied, and yield activation parameters Delta H double dagger = 4.7 +/- 1 kcal/mol and Delta S double dagger = -33 +/- 5 eu. Equilibrium studies for the same reaction yielded thermochemical parameters Delta H degrees = -18.6 +/- 3.2 kcal/mol and Delta S degrees = -56.2 +/- 10.5 eu. The large negative entropy of formation of (mu-S)[Mo(N[t-Bu]Ar)(3)](2) is interpreted in terms of the crowded molecular structure of this complex as revealed by X-ray crystallography. The crystal structure of Te-atom transfer agent TePCy3 is also reported. Quantum chemical calculations were used to make bond energy predictions as well as to probe terminal chalcogen bonding in terms of an energy partitioning analysis.
Original language | English |
---|---|
Pages (from-to) | 2133-2141 |
Number of pages | 9 |
Journal | Inorganic Chemistry |
Volume | 47 |
Issue number | 6 |
DOIs | |
Publication status | Published - 17 Mar 2008 |
Keywords
- ATOM TRANSFER-REACTIONS
- 3-COORDINATE MOLYBDENUM(III)
- CRYSTAL-STRUCTURES
- OXIDATION-STATE
- HYDROGEN BOND
- COMPLEXES
- SULFUR
- THERMOCHEMISTRY
- MOLECULES
- TELLURIUM