The vacuum ultraviolet absorption spectra of norbornadiene: vibrational analysis of the singlet and triplet valence states of norbornadiene by configuration interaction and density functional calculations

Michael H Palmer*, Soren Vronning Hoffmann, Nykola C Jones, Marcello Coreno, Monica de Simone, Cesare Grazioli, R Alan Aitken

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

A synchrotron-based vacuum ultraviolet absorption spectrum (VUV) of norbornadiene (NBD) is reported, and the extensive vibrational structure obtained has been analysed. The previously known 5b13s-Rydberg state has been reinterpreted by comparison with our recent high resolution photoelectron spectral (PES) analysis of the X2B1 ionic state. Additional vibrational detail in the region of this Rydberg state is observed in its VUV spectrum, when compared with the PES 2B1 ionic state; this is attributed to underlying valence state structure in the VUV. Valence and Rydberg state energies have been obtained by configuration interaction (CI) and time dependent density functional theoretical methods (TDDFT). Several low-lying singlet valence states, especially those which arise from ππ* excitations, conventionally termed NV1 to NV4, have been examined in detail. Their Franck-Condon (FC) and Herzberg-Teller (HT) profiles have been investigated and fitted to the VUV spectrum. Estimates of the experimental 00 band positions have been made from these fits. The anomaly of observed UV absorption by the 1A2 state of NBD is attributed to HT effects. Generally the HT components are less than 10% of the FC terms. The calculated 5b13s lowest Rydberg state also shows a low level of HT components. The observed electron impact spectra of NBD have been analysed in detail in terms of triplet states.
Original languageEnglish
Article number034308
Number of pages14
JournalThe Journal of Chemical Physics
Volume155
Issue number3
DOIs
Publication statusPublished - 20 Jul 2021

Fingerprint

Dive into the research topics of 'The vacuum ultraviolet absorption spectra of norbornadiene: vibrational analysis of the singlet and triplet valence states of norbornadiene by configuration interaction and density functional calculations'. Together they form a unique fingerprint.

Cite this