Abstract
A synchrotron-based vacuum ultraviolet absorption spectrum (VUV) of norbornadiene (NBD) is reported, and the extensive vibrational structure obtained has been analysed. The previously known 5b13s-Rydberg state has been reinterpreted by comparison with our recent high resolution photoelectron spectral (PES) analysis of the X2B1 ionic state. Additional vibrational detail in the region of this Rydberg state is observed in its VUV spectrum, when compared with the PES 2B1 ionic state; this is attributed to underlying valence state structure in the VUV. Valence and Rydberg state energies have been obtained by configuration interaction (CI) and time dependent density functional theoretical methods (TDDFT). Several low-lying singlet valence states, especially those which arise from ππ* excitations, conventionally termed NV1 to NV4, have been examined in detail. Their Franck-Condon (FC) and Herzberg-Teller (HT) profiles have been investigated and fitted to the VUV spectrum. Estimates of the experimental 00 band positions have been made from these fits. The anomaly of observed UV absorption by the 1A2 state of NBD is attributed to HT effects. Generally the HT components are less than 10% of the FC terms. The calculated 5b13s lowest Rydberg state also shows a low level of HT components. The observed electron impact spectra of NBD have been analysed in detail in terms of triplet states.
Original language | English |
---|---|
Article number | 034308 |
Number of pages | 14 |
Journal | The Journal of Chemical Physics |
Volume | 155 |
Issue number | 3 |
DOIs | |
Publication status | Published - 20 Jul 2021 |