The Sloan Digital Sky Survey Reverberation Mapping Project: improving lag detection with an extended multiyear baseline

Yue Shen, C. J. Grier, Keith Horne, W. N. Brandt, J. R. Trump, P. B. Hall, K. Kinemuchi, David Starkey, D. P. Schneider, Luis C. Ho, Y. Homayouni, Jennifer I-Hsiu Li, Ian D. McGreer, B. M. Peterson, Dmitry Bizyaev, Yuguang Chen, K. S. Dawson, Sarah Eftekharzadeh, P. J. Green, Yucheng GuoSiyao Jia, Linhua Jiang, Jean-Paul Kneib, Feng Li, Zefeng Li, Jundan Nie, Audrey Oravetz, Daniel Oravetz, Kaike Pan, Patrick Petitjean, Kara A. Ponder, Jesse Rogerson, M. Vivek, Tianmeng Zhang, Hu Zou

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)
1 Downloads (Pure)

Abstract

We investigate the effects of extended multiyear light curves (9 yr photometry and 5 yr spectroscopy) on the detection of time lags between the continuum variability and broad-line response of quasars at z ≳ 1.5, and compare with the results using 4 yr photometry+spectroscopy presented in a companion paper. We demonstrate the benefits of the extended light curves in three cases: (1) lags that are too long to be detected by the shorter-duration data but can be detected with the extended data; (2) lags that are recovered by the extended light curves but are missed in the shorter-duration data due to insufficient light-curve quality; and (3) lags for different broad-line species in the same object. These examples demonstrate the importance of long-term monitoring for reverberation mapping to detect lags for luminous quasars at high redshift, and the expected performance of the final data set from the Sloan Digital Sky Survey Reverberation Mapping project that will have 11 yr photometric and 7 yr spectroscopic baselines.
Original languageEnglish
Article numberL14
Number of pages8
JournalAstrophysical Journal
Volume883
Issue number1
DOIs
Publication statusPublished - 19 Sept 2019

Keywords

  • Astrophysical black holes
  • Quasars
  • Reverberation mapping
  • Supermassive black holes
  • Surveys

Fingerprint

Dive into the research topics of 'The Sloan Digital Sky Survey Reverberation Mapping Project: improving lag detection with an extended multiyear baseline'. Together they form a unique fingerprint.

Cite this