The modulation of two motor behaviors by persistent sodium currents in Xenopus laevis tadpoles

Erik Svensson, Hugo Jeffreys, Wenchang Li

Research output: Contribution to journalArticlepeer-review

Abstract

Persistent sodium currents (INaP) are common in neuronal circuitries and have been implicated in several diseases, such as amyotrophic lateral sclerosis (ALS) and epilepsy. However, the role of INaP in the regulation of specific behaviors is still poorly understood. In this study we have characterized INaP and investigated its role in the swimming and struggling behavior of Xenopus tadpoles. INaP was identified in three groups of neurons, namely, sensory Rohon-Beard neurons (RB neurons), descending interneurons (dINs), and non-dINs (neurons rhythmically active in swimming). All groups of neurons expressed INaP, but the currents differed in decay time constants, amplitudes, and the membrane potential at which INaP peaked. Low concentrations (1 µM) of the INaP blocker riluzole blocked INaP ~30% and decreased the excitability of the three neuron groups without affecting spike amplitudes or cellular input resistances. Riluzole reduced the number of rebound spikes in dINs and depressed repetitive firing in RB neurons and non-dINs. At the behavior level, riluzole at 1 µM shortened fictive swimming episodes. It also reduced the number of action potentials neurons fired on each struggling cycle. The results show that INaP may play important modulatory roles in motor behaviors.
Original languageEnglish
Pages (from-to)121-130
JournalJournal of Neurophysiology
Volume118
Issue number1
DOIs
Publication statusPublished - 1 Jul 2017

Keywords

  • Xenopus tadpole
  • Motor behaviour
  • Spinal cord
  • Sodium currents
  • Riluzole

Fingerprint

Dive into the research topics of 'The modulation of two motor behaviors by persistent sodium currents in Xenopus laevis tadpoles'. Together they form a unique fingerprint.

Cite this