Projects per year
Abstract
Phase equilibria, crystal structure, and transport properties in the (100−x) La0.95Ni0.6Fe0.4O3–xCeO2 (LNFCx) system (x=2–75 mol%) were studied in air. Evolution of phase compositions and crystal structure of components was observed. The LNFCx (2≤x≤10) are three-phase and comprise the perovskite phase with rhombohedral symmetry (R3̄c), the modified ceria with fluorite structure (Fm3̄m), and NiO as a secondary phase. These multiphase compositions exhibit metallic-like conductivity above 300 °C. Their conductivity gradually decreases from 395.6 to 260.6 S/cm, whereas the activation energy remains the same (Ea=0.04–0.05 eV), implying the decrease in the concentration of charge carriers. Phase compositions in the LNFCx (25≤x≤75) are more complicated. A change from semiconducting to metallic-like conductivity behavior was observed in LNFC25 at about 550 °C. The conductivity of LNFCx (25≤x≤75) could be explained in terms of a modified simple mixture model.
Original language | English |
---|---|
Pages (from-to) | 1499–7337 |
Journal | Journal of Solid State Chemistry |
DOIs | |
Publication status | Published - 2011 |
Keywords
- Perovskite
- CeO2
- Phase equilibria
- Conductivity
Fingerprint
Dive into the research topics of 'The La0.95Ni0.6Fe0.4O3–CeO2 system:'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Material for high Temp FCT EP/E064248/1: Materials for High Temperature Fuel Cell Technology
Irvine, J. T. S. (PI), Cassidy, M. (CoI), Connor, P. A. (CoI), Savaniu, C. D. (CoI) & Tao, S. (CoI)
1/01/08 → 31/12/12
Project: Standard