Abstract
Quantum fluctuations on curved spacetimes cause the emission of pairs of particles from the quantum vacuum, as in the Hawking effect from black holes. We use an optical analogue to gravity to investigate the influence of the curvature on quantum emission. Due to dispersion, the spacetime curvature varies with frequency here. We analytically calculate for all frequencies the particle flux, correlations and entanglement. We find that horizons increase the flux with a characteristic spectral shape. The photon number correlations transition from multi- to two-mode, with close to maximal entanglement. The quantum state is a diagnostic for the mode conversion in laboratory tests of quantum field theory on curved spacetimes.
Original language | English |
---|---|
Article number | 005 |
Number of pages | 15 |
Journal | SciPost Physics Core |
Volume | 3 |
Issue number | 1 |
DOIs | |
Publication status | Published - 30 Sept 2020 |
Fingerprint
Dive into the research topics of 'The influence of spacetime curvature on quantum emission in optical analogues to gravity'. Together they form a unique fingerprint.Datasets
-
The influence of spacetime curvature on quantum emission in optical analogues to gravity [Dataset]
Koenig, F. E. W. (Creator) & Jacquet, M. J. R. (Contributor), University of St Andrews, 1 Oct 2020
DOI: 10.17630/cbf5b4f6-2c82-4eb5-9aaf-b596bf8090d8
Dataset
File