The influence of Sn doping on the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy

A. Bourlange, D. J. Payne, R. G. Palgrave, H. Zhang, J. S. Foord, R. G. Egdell, R. M. J. Jacobs, T. D. Veal, P. D. C. King, C. F. McConville

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

The influence of Sn doping on the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy has been investigated over a range of substrate temperatures between 650 and 900 degrees C. The extent of dopant incorporation under a constant Sn flux decreases monotonically with increasing substrate temperature, although the n-type carrier concentration in "overdoped" films grown at 650 degrees C is lower than in films with a lower Sn concentration grown at 750 degrees C. The small increase in lattice parameter associated with Sn doping leads to improved matching with the substrate and suppresses breakup of the films into square islands observed in high temperature growth of undoped In2O3 on Y-stabilized ZrO2(100). Plasmon energies derived from infrared reflection spectra of Sn-doped films are found to be close to satellite energies in core level photoemission spectroscopy, but for a nominally undoped reference sample there is evidence for carrier accumulation at the surface. This influences both the In 3d core line shape and the intensity of a peak close to the Fermi energy associated with photoemission from the conduction band.

Original languageEnglish
Pages (from-to)013703
Number of pages9
JournalJournal of Applied Physics
Volume106
Issue number1
DOIs
Publication statusPublished - 1 Jul 2009

Keywords

  • carrier density
  • conduction bands
  • doping profiles
  • indium compounds
  • infrared spectra
  • lattice constants
  • molecular beam epitaxial growth
  • photoelectron spectra
  • plasma materials processing
  • reflectivity
  • semiconductor doping
  • semiconductor growth
  • semiconductor materials
  • semiconductor thin films
  • spectral line intensity
  • INDIUM-TIN-OXIDE
  • X-RAY PHOTOEMISSION
  • DILUTE ELECTRON-GAS
  • SB-DOPED SNO2
  • PHOTOELECTRON-SPECTRA
  • NEUTRON-DIFFRACTION
  • DEFECT STRUCTURE
  • THIN-FILMS
  • TRANSPARENT
  • ZIRCONIA

Fingerprint

Dive into the research topics of 'The influence of Sn doping on the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy'. Together they form a unique fingerprint.

Cite this