Abstract
The linear instability of the gradient zone of a solar pond containing a fluidporous
interface is investigated. It is found that the gradient zone can retain the same stability for lower values of the solute Rayleigh number with the introduction of a porous material compared with a purely fluid layer, whilst maintaining the same lower convective zone temperature.
Interestingly, it is also shown that for certain parameter values the penetration of a porous medium into the gradient zone can cause the temperature of the lower convective zone to rise. However, for certain parameter ranges, when the fluid-porous interface is towards the top of the gradient zone, the solar pond can become highly unstable.
interface is investigated. It is found that the gradient zone can retain the same stability for lower values of the solute Rayleigh number with the introduction of a porous material compared with a purely fluid layer, whilst maintaining the same lower convective zone temperature.
Interestingly, it is also shown that for certain parameter values the penetration of a porous medium into the gradient zone can cause the temperature of the lower convective zone to rise. However, for certain parameter ranges, when the fluid-porous interface is towards the top of the gradient zone, the solar pond can become highly unstable.
Original language | English |
---|---|
Pages (from-to) | 1-6 |
Journal | Advances in Water Resources |
Volume | 52 |
DOIs | |
Publication status | Published - Feb 2013 |
Keywords
- Solar pond
- Fluid/porous interface
- Linear instability