TY - JOUR
T1 - The importance of analysis method for breeding bird survey population trend estimates
AU - Thomas, Len
AU - Martin, Kathy
PY - 1996/4
Y1 - 1996/4
N2 - Population trends from the Breeding Bird Survey are widely used to focus conservation efforts on species thought to be in decline and to test preliminary hypotheses regarding the causes of these declines. A number of statistical methods have been used to estimate population trends, but there is no consensus us to which is the most reliable. We quantified differences in trend estimates or different analysis methods applied to the same subset of Breeding Bird Survey data. We estimated trends for 115 species in British Columbia using three analysis methods: U.S. National Biological Service route regression, Canadian Wildlife Service route regression, and nonparametric rank-trends analysis. Overall, the number of species estimated to be declining was similar among the three methods, but the number of statistically significant declines was not similar (15, 8, and 29 respectively). In addition, many differences existed among methods in the trend estimates assigned to individual species. Comparing the two route regression methods, Canadian Wildlife Service estimates had a greater absolute magnitude on average than those of the U.S. National Biological Service method. U.S. National Biological Service estimates were on average more positive than the Canadian Wildlife Service estimates when the respective agency's data selection criteria were applied separately. These results imply that our ability to detect population declines and to prioritize species of conservation concern depend strongly upon the analysis method used. This highlights the need for further research to determine how best to accurately estimate trends from the data. We suggest a method for evaluating the performance of the analysis methods by using simulated Breeding Bird Survey data.
AB - Population trends from the Breeding Bird Survey are widely used to focus conservation efforts on species thought to be in decline and to test preliminary hypotheses regarding the causes of these declines. A number of statistical methods have been used to estimate population trends, but there is no consensus us to which is the most reliable. We quantified differences in trend estimates or different analysis methods applied to the same subset of Breeding Bird Survey data. We estimated trends for 115 species in British Columbia using three analysis methods: U.S. National Biological Service route regression, Canadian Wildlife Service route regression, and nonparametric rank-trends analysis. Overall, the number of species estimated to be declining was similar among the three methods, but the number of statistically significant declines was not similar (15, 8, and 29 respectively). In addition, many differences existed among methods in the trend estimates assigned to individual species. Comparing the two route regression methods, Canadian Wildlife Service estimates had a greater absolute magnitude on average than those of the U.S. National Biological Service method. U.S. National Biological Service estimates were on average more positive than the Canadian Wildlife Service estimates when the respective agency's data selection criteria were applied separately. These results imply that our ability to detect population declines and to prioritize species of conservation concern depend strongly upon the analysis method used. This highlights the need for further research to determine how best to accurately estimate trends from the data. We suggest a method for evaluating the performance of the analysis methods by using simulated Breeding Bird Survey data.
KW - analysis of biological population trends
KW - North American Breeding Bird Survey
KW - DECLINES
UR - http://www.scopus.com/inward/record.url?scp=0029729875&partnerID=8YFLogxK
UR - http://www.jstor.org/stable/2386863
U2 - 10.1046/j.1523-1739.1996.10020479.x
DO - 10.1046/j.1523-1739.1996.10020479.x
M3 - Article
SN - 0888-8892
VL - 10
SP - 479
EP - 490
JO - Conservation Biology
JF - Conservation Biology
IS - 2
ER -