TY - JOUR
T1 - The HARPS-N Rocky Planet Search
T2 - I. A transiting rocky planet in a 4 planet system at 6.5 pc from the Sun
AU - Motalebi, F.
AU - Udry, S.
AU - Gillon, M.
AU - Lovis, C.
AU - Segransan, D.
AU - Buchhave, L. A.
AU - Demory, B. O.
AU - Malavolta, L.
AU - Dressing, C. D.
AU - Sasselov, D.
AU - Rice, K.
AU - Charbonneau, D.
AU - Cameron, Andrew Collier
AU - Latham, D.
AU - Molinari, E.
AU - Pepe, F.
AU - Affer, L.
AU - Bonomo, A. S.
AU - Cosentino, R.
AU - Dumusque, X.
AU - Figueira, P.
AU - Fiorenzano, A. F. M.
AU - Gettel, S.
AU - Harutyunyan, A.
AU - Haywood, Raphaelle Dawn
AU - Johnson, J.
AU - Lopez, E.
AU - Lopez-Morales, M.
AU - Mayor, M.
AU - Micela, G.
AU - Mortier, A.
AU - Nascimbeni, V.
AU - Philips, D.
AU - Piotto, G.
AU - Pollacco, D.
AU - Queloz, D.
AU - Sozzetti, A.
AU - Vanderburg, A.
AU - Watson, C. A.
N1 - The research leading to these results has received funding from the European Union Seventh Framework program (FP7/2007- 2013) under grant agreement No. 313014 (ETAEARTH). C.D. is supported by a National Science Foundation Graduate Research Fellowship. P.F. acknowledges support by Fundaçao para a Ciência e a Tecnologia (FCT) through Investigador FCT contracts of reference IF/01037/2013 and POPH/FSE (EC) by FEDER funding through the program "Programa Operacional de Factores de Competitividade - COMPETE". S.U., C.L., D.S. and F.P. acknowledge the financial support of the SNSF. PF further acknowledges support from Fundação para a Ciência e a Tecnologia (FCT) in the form of an exploratory project of reference IF/01037/2013CP1191/CT0001. RDH was supported by STFC studentship grant ST/J500744/1 during the course of this work. CAW acknowledges support from STFC grant ST/L000709/1. This publication was made possible by a grant from the John Templeton Foundation. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. NNX15AC90G issued through the Exoplanets Research Program.
PY - 2015/12
Y1 - 2015/12
N2 - We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their formation history, physical properties, internal structure, and atmosphere composition are, however, still to be solved. We present here the detection of a system of four low-mass planets around the bright (V = 5.5) and close-by (6.5 pc) star HD 219134. This is the first result of the Rocky Planet Search programme with HARPS-N on the Telescopio Nazionale Galileo in La Palma. The inner planet orbits the star in 3.0935 ± 0.0003 days, on a quasi-circular orbit with a semi-major axis of 0.0382 ± 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD 219134 b the nearest known transiting planet to date. From the amplitude of the radial velocity variation (2.25 ± 0.22 ms-1) and observed depth of the transit (359 ± 38 ppm), the planet mass and radius are estimated to be 4.36 ± 0.44 M⊕ and 1.606 ± 0.086 R⊕, leading to a mean density of 5.76 ± 1.09 g cm-3, suggesting a rocky composition. One additional planet with minimum-mass of 2.78 ± 0.65 M⊕ moves on a close-in, quasi-circular orbit with a period of 6.767 ± 0.004 days. The third planet in the system has a period of 46.66 ± 0.08 days and a minimum-mass of 8.94 ± 1.13 M⊕, at 0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ± 0.11. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 ± 0.1 days). The planetary origin of the signal is, however, thepreferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 71 M⊕ orbits the star in 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at a distance of 2.56 AU.
AB - We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their formation history, physical properties, internal structure, and atmosphere composition are, however, still to be solved. We present here the detection of a system of four low-mass planets around the bright (V = 5.5) and close-by (6.5 pc) star HD 219134. This is the first result of the Rocky Planet Search programme with HARPS-N on the Telescopio Nazionale Galileo in La Palma. The inner planet orbits the star in 3.0935 ± 0.0003 days, on a quasi-circular orbit with a semi-major axis of 0.0382 ± 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD 219134 b the nearest known transiting planet to date. From the amplitude of the radial velocity variation (2.25 ± 0.22 ms-1) and observed depth of the transit (359 ± 38 ppm), the planet mass and radius are estimated to be 4.36 ± 0.44 M⊕ and 1.606 ± 0.086 R⊕, leading to a mean density of 5.76 ± 1.09 g cm-3, suggesting a rocky composition. One additional planet with minimum-mass of 2.78 ± 0.65 M⊕ moves on a close-in, quasi-circular orbit with a period of 6.767 ± 0.004 days. The third planet in the system has a period of 46.66 ± 0.08 days and a minimum-mass of 8.94 ± 1.13 M⊕, at 0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ± 0.11. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 ± 0.1 days). The planetary origin of the signal is, however, thepreferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 71 M⊕ orbits the star in 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at a distance of 2.56 AU.
KW - Planetary systems: super-Earth
KW - Techniques: radial velocity
KW - Techniques: photometry
KW - Stars:individual: HD219134
KW - Binaries: eclipsing
KW - Instrument: HARPS-N
UR - http://adsabs.harvard.edu/abs/2015arXiv150708532M
U2 - 10.1051/0004-6361/201526822
DO - 10.1051/0004-6361/201526822
M3 - Article
SN - 0004-6361
VL - 584
SP - 1
EP - 12
JO - Astronomy & Astrophysics
JF - Astronomy & Astrophysics
M1 - A72
ER -