The genome and methylome of a beetle with complex social behavior, Nicrophorus vespilloides (Coleoptera: Silphidae)

Christopher B. Cunningham, Lexiang Ji, R. Axel W. Wiberg, Jennifer Shelton, Elizabeth C. McKinney, Darren J. Parker, Richard B. Meagher, Kyle M. Benowitz, Eileen M. Roy-Zokan, Michael G. Ritchie, Susan J. Brown, Robert J. Schmitz, Allen J. Moore

Research output: Contribution to journalArticlepeer-review

50 Citations (Scopus)

Abstract

Testing for conserved and novel mechanisms underlying phenotypic evolution requires a diversity of genomes available for comparison spanning multiple independent lineages. For example, complex social behavior in insects has been investigated primarily with eusocial lineages, nearly all of which are Hymenoptera. If conserved genomic influences on sociality do exist, we need data from a wider range of taxa that also vary in their levels of sociality. Here, we present the assembled and annotated genome of the subsocial beetle Nicrophorus vespilloides, a species long used to investigate evolutionary questions of complex social behavior. We used this genome to address two questions. First, do aspects of life history, such as using a carcass to breed, predict overlap in gene models more strongly than phylogeny? We found that the overlap in gene models was similar between N. vespilloides and all other insect groups regardless of life history. Second, like other insects with highly developed social behavior but unlike other beetles, does N. vespilloides have DNA methylation? We found strong evidence for an active DNA methylation system. The distribution of methylation was similar to other insects with exons having the most methylated CpGs. Methylation status appears highly conserved; 85% of the methylated genes in N. vespilloides are also methylated in the hymentopteran Nasonia vitripennis. The addition of this genome adds a coleopteran resource to answer questions about the evolution and mechanistic basis of sociality and to address questions about the potential role of methylation in social behavior.
Original languageEnglish
Pages (from-to)3383-3396
Number of pages14
JournalGenome Biology and Evolution
Volume7
Issue number12
Early online date9 Oct 2015
DOIs
Publication statusPublished - 1 Dec 2015

Keywords

  • Burying beetle
  • Epigenetics
  • Parental care
  • Sociality

Fingerprint

Dive into the research topics of 'The genome and methylome of a beetle with complex social behavior, Nicrophorus vespilloides (Coleoptera: Silphidae)'. Together they form a unique fingerprint.

Cite this