Abstract
A combined analytical and numerical study of magnetic reconnection in two-dimensional resistive magnetohydrodynamics is carried out by using different explicit spatial variations of the resistivity. A special emphasis on the existence of stable/unstable Petschek's solutions is taken, comparing with the recent analytical model given by Forbes et al. [Phys. Plasmas 20, 052902 (2013)]. Our results show good quantitative agreement between the analytical theory and the numerical solutions for a Petschek-type solution to within an accuracy of about 10% or better. Our simulations also show that if the resistivity profile is relatively flat near the X-point, one of two possible asymmetric solutions will occur. Which solution occurs depends on small random perturbations of the initial conditions. The existence of two possible asymmetric solutions, in a system which is otherwise symmetric, constitutes an example of spontaneous symmetry breaking.
Original language | English |
---|---|
Number of pages | 11 |
Journal | Physics of Plasmas |
Volume | 21 |
Issue number | 11 |
Early online date | 19 Nov 2014 |
DOIs | |
Publication status | Published - Nov 2014 |