TY - JOUR
T1 - The extremal index, hitting time statistics and periodicity
AU - Freitas, Ana Christina
AU - Freitas, Jorge
AU - Todd, Michael John
PY - 2012
Y1 - 2012
N2 - The extremal index appears as a parameter in Extreme Value Laws for stochastic processes, characterising the clustering of extreme events. We apply this idea in a dynamical systems context to analyse the possible Extreme Value Laws for the stochastic process generated by observations taken along dynamical orbits with respect to various measures. We derive new, easily checkable, conditions which identify Extreme Value Laws with particular extremal indices. In the dynamical context we prove that the extremal index is associated with periodic behaviour. The analogy of these laws in the context of hitting time statistics, as studied in the authors’ previous works on this topic, is explained and exploited extensively allowing us to prove, for the first time, the existence of hitting time statistics for balls around periodic points. Moreover, for very well behaved systems (uniformly expanding) we completely characterise the extremal behaviour by proving that either we have an extremal index less than 1 at periodic points or equal to 1 at any other point. This theory then also applies directly to general stochastic processes, adding both useful tools to identify the extremal index and giving deeper insight into the periodic behaviour it suggests.
AB - The extremal index appears as a parameter in Extreme Value Laws for stochastic processes, characterising the clustering of extreme events. We apply this idea in a dynamical systems context to analyse the possible Extreme Value Laws for the stochastic process generated by observations taken along dynamical orbits with respect to various measures. We derive new, easily checkable, conditions which identify Extreme Value Laws with particular extremal indices. In the dynamical context we prove that the extremal index is associated with periodic behaviour. The analogy of these laws in the context of hitting time statistics, as studied in the authors’ previous works on this topic, is explained and exploited extensively allowing us to prove, for the first time, the existence of hitting time statistics for balls around periodic points. Moreover, for very well behaved systems (uniformly expanding) we completely characterise the extremal behaviour by proving that either we have an extremal index less than 1 at periodic points or equal to 1 at any other point. This theory then also applies directly to general stochastic processes, adding both useful tools to identify the extremal index and giving deeper insight into the periodic behaviour it suggests.
U2 - 10.1016/j.aim.2012.07.029
DO - 10.1016/j.aim.2012.07.029
M3 - Article
SN - 0001-8708
VL - 231
SP - 2626
EP - 2665
JO - Advances in Mathematics
JF - Advances in Mathematics
IS - 5
ER -