The emergence of toroidal flux tubes from beneath the solar photosphere

Alan William Hood, Vasilis Archontis, K Galsgaard, F Moreno-Insertis

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)

Abstract

Context. Models of flux emergence frequently use a twisted cylindrical loop as the initial starting configuration and ignore the coupling between the radiation field and plasma. In these models, the axis of the original tube never emerges through the photosphere. Without the axis emerging, it is very difficult to form a realistic sunspot.

Aims. The aim is to use a toroidal flux loop, placed beneath the solar photosphere and study whether the axis of the system emerges fully into the atmosphere. The toroidal curvature means that the plasma can drain more effectively than in a straight cylindrical tube.

Methods. Three-dimensional magnetohydrodynamic numerical simulations of an emerging magnetic flux tube are presented for an initial toroidal loop model. The simulations use a Lagrangian-Remap code that is particularly suited to dealing with shocks and strong current sheets.

Results. The evolution of the toroidal loop is followed and the characteristics of the emergence process are compared with the traditional cylindrical loops. The flux sources seen at the photosphere are more circular, and there are less shearing motions in the upper photosphere. When the initial magnetic field strength is relatively weak the evolution of the system is similar to the cylindrical loop case, with the formation of a new flux rope above the photosphere. A striking result is that for large values of field strength the axial field of the toroidal loop emerges fully into the corona. This is reported for the first time in experiments of flux emergence in a highly stratified atmosphere that do not solve self-consistently the radiation transfer problem. In addition, the new flux rope forms below the original axis of the toroidal tube when the field strength is sufficiently strong.

Original languageEnglish
Pages (from-to)999-1011
Number of pages13
JournalAstronomy & Astrophysics
Volume503
Issue number3
DOIs
Publication statusPublished - Sept 2009

Keywords

  • Sun: magnetic fields
  • magnetohydrodynamics (MHD)
  • plasmas
  • EMERGING MAGNETIC-FLUX
  • CONVECTION ZONE
  • ACTIVE-REGION
  • PARKER INSTABILITY
  • MHD SIMULATIONS
  • ATMOSPHERE
  • MODEL
  • EVOLUTION
  • DYNAMICS
  • CORONA

Fingerprint

Dive into the research topics of 'The emergence of toroidal flux tubes from beneath the solar photosphere'. Together they form a unique fingerprint.

Cite this