Abstract
The aim of this study was to investigate the dependence of the observed cleavage rates (k(obs)) of a tertiary stabilized hammerhead ribozyme (tsHHRz) and of a minimal hammerhead ribozyme (mHHRz), both derived from tobacco ringspot virus, on the type and concentration of divalent metal ions in order to interpret the functional role of high-affinity ions detected by electron paramagnetic resonance (EPR). To measure the fast cleavage of the cis tsHHRz, a new method using chemically synthesized fluorescent-labeled RNAs has been developed. The tsHHRz cleavage rate is up to 20-fold faster than that of the mHHRz under similar conditions. The presence of Mn2+ ions leads to a 60-fold faster cleavage than in the presence of Mg2+ ions. The functional role of the high-affinity ion was evaluated using neomycin B inhibition studies. Neomycin B reduces the cleavage activity of both ribozymes but the inhibitory effect on tsHHRz is much weaker than that on the mHHRz. EPR data had shown that neomycin B displaces both low-affinity and high-affinity Mn2+ ions from the mHHRz, but only low-affinity ions from tsHHRz. Inhibition of the tsHHRz activity may be due to the displacement of weakly bound Me2+ ions required for the local folding leading to cleavage, whereas both the high-affinity ion required for folding and the weakly bound ions are replaced in the mHHRz. The high-affinity metal ion is required for the stabilization of the global HHRz structure, but is not involved in catalysis or stabilization of the transient state.
Original language | English |
---|---|
Pages (from-to) | 101-110 |
Number of pages | 10 |
Journal | Oligonucleotides |
Volume | 18 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jun 2008 |
Keywords
- SELF-CLEAVAGE
- MONOVALENT CATIONS
- NUCLEIC-ACIDS
- BINDING
- RNA
- NEOMYCIN
- REQUIREMENTS
- SPECTROSCOPY
- INHIBITION
- MECHANISM