TY - JOUR
T1 - The ATLAS3D Project - XXIII. Angular momentum and nuclear surface brightness profiles
AU - Krajnović, Davor
AU - Karick, A. M.
AU - Davies, Roger L.
AU - Naab, Thorsten
AU - Sarzi, Marc
AU - Emsellem, Eric
AU - Cappellari, Michele
AU - Serra, Paolo
AU - de Zeeuw, P. T.
AU - Scott, Nicholas
AU - McDermid, Richard M.
AU - Weijmans, Anne-Marie
AU - Davis, Timothy A.
AU - Alatalo, Katherine
AU - Blitz, Leo
AU - Bois, Maxime
AU - Bureau, Martin
AU - Bournaud, Frederic
AU - Crocker, Alison
AU - Duc, Pierre-Alain
AU - Khochfar, Sadegh
AU - Kuntschner, Harald
AU - Morganti, Raffaella
AU - Oosterloo, Tom
AU - Young, Lisa M.
PY - 2013/8/21
Y1 - 2013/8/21
N2 - We investigate nuclear light profiles in 135 ATLAS3D galaxies
for which the Hubble Space Telescope (HST) imaging is available and
compare them to the large-scale kinematics obtained with the SAURON
integral-field spectrograph. Specific angular momentum,
λR, correlates with the shape of nuclear light
profiles, where, as suggested by previous studies, cores are typically
found in slow rotators and core-less galaxies are fast rotators. As also
shown before, cores are found only in massive galaxies and only in
systems with the stellar mass (measured via dynamical models) M ≳ 8
× 1010 M⊙. Based on our sample, we,
however, see no evidence for a bimodal distribution of nuclear slopes.
The best predictor for finding a core is based on the stellar velocity
dispersion within an effective radius, σe, and specific
angular momentum, where cores are found for λR ≲
0.25 and σe ≳ 160 km s-1. We estimate
that only about 10 per cent of nearby early-type galaxies contain cores.
Furthermore, we show that there is a genuine population of fast rotators
with cores. We also show that core fast rotators are morphologically,
kinematically and dynamically different from core slow rotators. The
cores of fast rotators, however, could harbour black holes of similar
masses to those in core slow rotators, but typically more massive than
those found in core-less fast rotators. Cores of both fast and slow
rotators are made of old stars and found in galaxies typically lacking
molecular or atomic gas (with a few exceptions). Core-less galaxies, and
especially core-less fast rotators, are underluminous in the diffuse
X-ray emission, but the presence of a core does not imply high X-ray
luminosities. Additionally, we postulate (as many of these galaxies lack
HST imaging) a possible population of core-less galaxies among slow
rotators, which cannot be explained as face-on discs, but comprise a
genuine sub-population of slow rotators. These galaxies are typically
less massive and flatter than core slow rotators, and show evidence for
dynamical cold structures and exponential photometric components. Based
on our findings, major non-dissipative (gas-poor) mergers together with
black hole binary evolution may not be the only path for formation of
cores in early-type galaxies. We discuss possible processes for
formation of cores and their subsequent preservation.
AB - We investigate nuclear light profiles in 135 ATLAS3D galaxies
for which the Hubble Space Telescope (HST) imaging is available and
compare them to the large-scale kinematics obtained with the SAURON
integral-field spectrograph. Specific angular momentum,
λR, correlates with the shape of nuclear light
profiles, where, as suggested by previous studies, cores are typically
found in slow rotators and core-less galaxies are fast rotators. As also
shown before, cores are found only in massive galaxies and only in
systems with the stellar mass (measured via dynamical models) M ≳ 8
× 1010 M⊙. Based on our sample, we,
however, see no evidence for a bimodal distribution of nuclear slopes.
The best predictor for finding a core is based on the stellar velocity
dispersion within an effective radius, σe, and specific
angular momentum, where cores are found for λR ≲
0.25 and σe ≳ 160 km s-1. We estimate
that only about 10 per cent of nearby early-type galaxies contain cores.
Furthermore, we show that there is a genuine population of fast rotators
with cores. We also show that core fast rotators are morphologically,
kinematically and dynamically different from core slow rotators. The
cores of fast rotators, however, could harbour black holes of similar
masses to those in core slow rotators, but typically more massive than
those found in core-less fast rotators. Cores of both fast and slow
rotators are made of old stars and found in galaxies typically lacking
molecular or atomic gas (with a few exceptions). Core-less galaxies, and
especially core-less fast rotators, are underluminous in the diffuse
X-ray emission, but the presence of a core does not imply high X-ray
luminosities. Additionally, we postulate (as many of these galaxies lack
HST imaging) a possible population of core-less galaxies among slow
rotators, which cannot be explained as face-on discs, but comprise a
genuine sub-population of slow rotators. These galaxies are typically
less massive and flatter than core slow rotators, and show evidence for
dynamical cold structures and exponential photometric components. Based
on our findings, major non-dissipative (gas-poor) mergers together with
black hole binary evolution may not be the only path for formation of
cores in early-type galaxies. We discuss possible processes for
formation of cores and their subsequent preservation.
KW - galaxies: elliptical and lenticular
KW - cD
KW - galaxies: evolution
KW - galaxies: formation
KW - galaxies: kinematics and dynamics
KW - galaxies: nuclei
KW - galaxies: structure
UR - http://adsabs.harvard.edu/abs/2013MNRAS.433.2812K
U2 - 10.1093/mnras/stt905
DO - 10.1093/mnras/stt905
M3 - Article
SN - 0035-8711
VL - 433
SP - 2812
EP - 2839
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -