The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli

RG Collins, Konstantinos Beis, Changjiang Dong, Catherine Helen Botting, C McDonnell, RC Ford, BR Clarke, C Whitfield, James Henderson Naismith

Research output: Contribution to journalArticlepeer-review

124 Citations (Scopus)

Abstract

Capsular polysaccharides (CPSs) are essential virulence determinants of many pathogenic bacteria. Escherichia coli group 1 CPSs provide paradigms for widespread surface polysaccharide assembly systems in Gram-negative bacteria. In these systems, complex carbohydrate polymers must be exported across the periplasm and outer membrane to the cell surface. Group 1 CPS export requires oligomers of the outer membrane protein, Wza, for translocation across the outer membrane. Assembly also depends on Wzc, an inner membrane tyrosine autokinase known to regulate export and synthesis of group 1 CPS. Here, we provide a structural view of a complex comprising Wzc and Wza that spans the periplasm, connecting the inner and outer membranes. Examination of transmembrane sections of the complex suggests that the periplasm is compressed at the site of complex formation. An important feature of CPS production is the coupling of steps involved in biosynthesis and export. We propose that the Wza-Wzc complex provides the structural and regulatory core of a larger macromolecular machine. We suggest a mechanism by which CPS may move from the periplasm through the outer membrane.

Original languageEnglish
Pages (from-to)2390-2395
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume104
Issue number7
DOIs
Publication statusPublished - 13 Feb 2007

Keywords

  • bacteria
  • capsule
  • export
  • membrane
  • TRANSMISSION ELECTRON-MICROSCOPY
  • OUTER-MEMBRANE LIPOPROTEIN
  • BACTERIAL CHANNEL-TUNNELS
  • GRAM-NEGATIVE BACTERIA
  • TYROSINE AUTOKINASE
  • PROTEIN EXPORT
  • NEISSERIA-MENINGITIDIS
  • FUNCTIONAL-ANALYSIS
  • PILQ SECRETIN
  • COMPLEX

Fingerprint

Dive into the research topics of 'The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli'. Together they form a unique fingerprint.

Cite this