Abstract
Navigation is an essential skill for many animals, and understanding how animal use environmental information, particularly visual information, to navigate has a long history in both ethology and psychology. In birds, the dominant approach for investigating navigation at small-scales comes from comparative psychology, which emphasizes the cognitive representations underpinning spatial memory. The majority of this work is based in the laboratory and it is unclear whether this context itself affects the information that birds learn and use when they search for a location. Data from hummingbirds suggests that birds in the wild might use visual information in quite a different manner. To reconcile these differences, here we propose a new approach to avian navigation, inspired by the sensory-driven study of navigation in insects. Using methods devised for studying the navigation of insects, it is possible to quantify the visual information available to navigating birds, and then to determine how this information influences those birds’ navigation decisions. Focusing on four areas that we consider characteristic of the insect navigation perspective, we discuss how this approach has shone light on the information insects use to navigate, and assess the prospects of taking a similar approach with birds. Although birds and insects differ in many ways, there is nothing in the insect-inspired approach of the kind we describe that means these methods need be restricted to insects. On the contrary, adopting such an approach could provide a fresh perspective on the well-studied question of how birds navigate through a variety of environments.
Original language | English |
---|---|
Pages (from-to) | 7-22 |
Number of pages | 16 |
Journal | Learning and Behavior |
Volume | 46 |
Issue number | 1 |
Early online date | 26 Feb 2018 |
DOIs | |
Publication status | Published - Mar 2018 |
Keywords
- Spatial learning
- Active vision
- Optic flow
- Sensory ecology
- Landmarks