Projects per year
Abstract
Exciton diffusion is an important part of light harvesting in organic photovoltaics (OPVs) because it enables excitons to reach the interface betweeen donor and acceptor and contribute to the photocurrent. Here we used simple and cost-effective techniques of thermal annealing and solvent vapour annealing to increase the exciton diffusion coefficient and exciton diffusion length in two liquid crystalline electron donor materials BQR and BTR. We found that the three-dimensional exciton diffusion length increased to ~40 nm upon annealing in both materials. Grazing-incidence wide angle X-ray scattering (GIWAXS) measurements show an increase of crystallite size to ~37 nm in both materials after thermal annealing. We determined an average domain size of these materials in the blends with PC71BM using diffusion-limited fluorescence quenching and found that it increased to 31 nm in BTR PC71BM blends and to 60 nm in BQR PC71BM blends. Our results provide understanding of how annealing improves device efficiency.
Original language | English |
---|---|
Number of pages | 8 |
Journal | Journal of Materials Chemistry C |
Volume | In press |
Early online date | 19 Apr 2019 |
DOIs | |
Publication status | E-pub ahead of print - 19 Apr 2019 |
Fingerprint
Dive into the research topics of 'Tailoring exciton diffusion and domain size in photovoltaic small molecules by processing'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Equipment Account: Characterisation and Manipulation of Advanced Functional Materials and their Interfaces at the Nanoscale
Samuel, I. D. W. (PI)
1/10/13 → 30/09/23
Project: Standard
-
ERC Advanced Grant EXCITON: EU FP7 ERC Advanced Grant 2012 EXCITON
Samuel, I. D. W. (PI)
1/04/13 → 30/03/19
Project: Standard
Datasets
-
Tailoring exciton diffusion and domain size in photovoltaic small molecules by processing (dataset)
Sajjad, M. T. (Creator), Zhang, Y. (Creator), Geraghty, P. B. (Creator), Mitchell, V. D. (Creator), Ruseckas, A. (Creator), Blaszczyk, O. (Creator), Jones, D. J. (Creator) & Samuel, I. D. W. (Creator), University of St Andrews, 10 May 2019
DOI: 10.17630/10fd3801-b282-42c9-b672-750f8d1bb635
Dataset
File