Synthetic, Structural, NMR, and Computational Study of a Geminally Bis(peri-substituted) Tridentate Phosphine and Its Chalcogenides and Transition-Metal Complexes

Matthew James Ray, Rebecca Amy Michele Randall, Kasun Sankalpa Athukorala Arachchige, Alexandra Martha Zoya Slawin, Michael Buehl, Tomas Lebl, Petr Kilian*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Coupling of two acenaphthene backbones through a phosphorus atom in a geminal fashion gives the first geminally bis(peri-substituted) tridentate phosphine 1. The rigid nature of the aromatic backbone and overall crowding of the molecule result in a rather inflexible ligand, with the three phosphorus atoms forming a relatively compact triangular cluster. Phosphine 1 displays restricted dynamics on an NMR time scale, which leads to the anisochronicity of all three phosphorus nuclei at low temperatures. Strained bis- and tris(sulfides) 2 and 3 and the bis(selenide) 4 have been isolated from the reaction of 1 with sulfur and selenium, respectively. These chalcogeno derivatives display pronounced in-plane and out-of-plane distortions of the aromatic backbones, indicating the limits of their angular distortions. In addition, we report metal complexes with tetrahedral [(1)Cu(MeCN)][BF4) (5), square planar [(1)PtCl][Cl] (6), trigonal bipyramidal [(1)FeCl2] (7), and octahedral fac-[(1)Mo(CO)(3)] (8) geometries. In all of these complexes the tris(phosphine) backbone is distorted, however to a significantly smaller extent than that in the mentioned chalcogenides 2-4. Complexes 5 and 8 show fluxionality in P-31 and H-1 NMR. All new compounds 1-8 were fully characterized, and their crystal structures are reported. Conclusions from dynamic NMR observations were augmented by DFT calculations.

Original languageEnglish
Pages (from-to)4346-4359
Number of pages14
JournalInorganic Chemistry
Volume52
Issue number8
DOIs
Publication statusPublished - 15 Apr 2013

Keywords

  • X-RAY-STRUCTURE
  • OLIGOPHOSPHINE LIGANDS
  • MOLECULAR-STRUCTURES
  • CRYSTAL-STRUCTURE
  • DONOR
  • 1,8-BIS(PHOSPHINO)NAPHTHALENES
  • PALLADIUM(II)
  • DIPHOSPHINE
  • NAPHTHALENE
  • MOLYBDENUM

Fingerprint

Dive into the research topics of 'Synthetic, Structural, NMR, and Computational Study of a Geminally Bis(peri-substituted) Tridentate Phosphine and Its Chalcogenides and Transition-Metal Complexes'. Together they form a unique fingerprint.

Cite this