TY - JOUR
T1 - Supercurrent-enabled Andreev reflection in a chiral quantum Hall edge state
AU - Michelsen, Andreas B.
AU - Recher, Patrik
AU - Braunecker, Bernd
AU - Schmidt, Thomas L.
N1 - Funding: ABM and TLS acknowledge support from the National Research Fund, Luxembourg under the grant ATTRACT, Grant No. A14/MS/7556175/MoMeSys. ABM and BB acknowledge support from St. Leonard’s European Inter-University Doctoral Scholarship of the University of St. Andrews. PR acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the framework of Germany’s Excellence Strategy-EXC-2123
QuantumFrontiers-390837967.
PY - 2023/1/31
Y1 - 2023/1/31
N2 - A chiral quantum Hall (QH) edge state placed in proximity to an s-wave superconductor experiences induced superconducting correlations. Recent experiments have observed the effect of proximity coupling in QH edge states through signatures of the mediating process of Andreev reflection. We present the microscopic theory behind this effect by modeling the system with a many-body Hamiltonian, consisting of an s-wave superconductor, subject to spin-orbit coupling and a magnetic field, which is coupled by electron tunneling to an integer QH edge state. By integrating out the superconductor we obtain an effective pairing Hamiltonian in the QH edge state. We clarify the qualitative appearance of nonlocal superconducting correlations in a chiral edge state and analytically predict the suppression of electron-hole conversion at low energies (Pauli blocking) and negative resistance as experimental signatures of Andreev reflection in this setup. In particular, we show how two surface phenomena of the superconductor, namely, Rashba spin-orbit coupling and a supercurrent due to the Meissner effect, are essential for the Andreev reflection. Our work provides a promising pathway to the realization of Majorana zero modes and their parafermionic generalizations.
AB - A chiral quantum Hall (QH) edge state placed in proximity to an s-wave superconductor experiences induced superconducting correlations. Recent experiments have observed the effect of proximity coupling in QH edge states through signatures of the mediating process of Andreev reflection. We present the microscopic theory behind this effect by modeling the system with a many-body Hamiltonian, consisting of an s-wave superconductor, subject to spin-orbit coupling and a magnetic field, which is coupled by electron tunneling to an integer QH edge state. By integrating out the superconductor we obtain an effective pairing Hamiltonian in the QH edge state. We clarify the qualitative appearance of nonlocal superconducting correlations in a chiral edge state and analytically predict the suppression of electron-hole conversion at low energies (Pauli blocking) and negative resistance as experimental signatures of Andreev reflection in this setup. In particular, we show how two surface phenomena of the superconductor, namely, Rashba spin-orbit coupling and a supercurrent due to the Meissner effect, are essential for the Andreev reflection. Our work provides a promising pathway to the realization of Majorana zero modes and their parafermionic generalizations.
U2 - 10.1103/PhysRevResearch.5.013066
DO - 10.1103/PhysRevResearch.5.013066
M3 - Article
SN - 2643-1564
VL - 5
JO - Physical Review Research
JF - Physical Review Research
IS - 1
M1 - 013066
ER -