Abstract
The structures of three substituted arenesulfonamides have been solved from laboratory X-ray powder diffraction data, using a new direct-space structure solution method based on a differential evolution algorithm, and refined by the Rietveld method. In 2-toluenesulfonamide, C7H9NO2S (I) (tetragonal I4(1)/a, Z = 16), the molecules are linked by N-H...O=S hydrogen bonds into a three-dimensional framework. In 3-nitrobenzenesulfonamide, C6H6N2O4S (II) (monoclinic P2(1), Z = 2), N-H...O=S hydrogen bonds produce molecular ladders, which are linked into sheets by C-H...O=S hydrogen bonds: the nitro group does not participate in the hydrogen bonding. Molecules of 4-nitrobenzenesulfonamide, C6H6N2O4S (III) (monoclinic P2(1)/n, Z = 4), are linked into sheets by four types of hydrogen bond, N-H...O=S, N-H...O(nitro), C-H...O=S and C-H...O(nitro), and the sheets are weakly linked by aromatic pi...pi stacking interactions.
Original language | English |
---|---|
Pages (from-to) | 823-834 |
Number of pages | 12 |
Journal | Acta Crystallographica. Section B, Structural Science |
Volume | B58 |
DOIs | |
Publication status | Published - Oct 2002 |
Keywords
- CRYSTAL-STRUCTURE DETERMINATION
- C-METHYLATED NITROANILINES
- GENETIC ALGORITHM
- PATTERNS
- SOLIDS