TY - JOUR
T1 - Structure-from-motion using historical aerial images to analyse changes in glacier surface elevation
AU - Mölg, Nico
AU - Bolch, Tobias
N1 - This study was performed within and funded by the Swiss National Science Foundation project No. 200021 169775.
PY - 2017/10/3
Y1 - 2017/10/3
N2 - The application of structure-from-motion (SfM) to generate digital terrain models (DTMs) derived from different image sources has strongly increased, the major reason for this being that processing is substantially easier with SfM than with conventional photogrammetry. To test the functionality in a demanding environment, we applied SfM and conventional photogrammetry to archival aerial images from Zmuttgletscher, a mountain glacier in Switzerland, for nine dates between 1946 and 2005 using the most popular software packages, and compared the results regarding bundle adjustment and final DTM quality. The results suggest that by using SfM it is possible to produce DTMs of similar quality as with conventional photogrammetry. Higher point cloud density and less noise allow a higher ground resolution of the final DTM, and the time effort from the user is 3-6 times smaller, while the controls of the commercial software packages Agisoft PhotoScan (Version 1.2; Agisoft, St. Petersburg, Russia) and Pix4Dmapper (Version 3.0; Pix4D, Lausanne, Switzerland) are limited in comparison to ERDAS photogrammetry. SfM performs less reliably when few images with little overlap are processed. Even though SfM facilitates the largely automated production of high quality DTMs, the user is not exempt from a thorough quality check, at best with reference data where available. The resulting DTM time series revealed an average change in surface elevation at the glacier tongue of -67.0 ± 5.3 m. The spatial pattern of changes over time reflects the influence of flow dynamics and the melt of clean ice and that under debris cover. With continued technological advances, we expect to see an increasing use of SfM in glaciology for a variety of purposes, also in processing archival aerial imagery.
AB - The application of structure-from-motion (SfM) to generate digital terrain models (DTMs) derived from different image sources has strongly increased, the major reason for this being that processing is substantially easier with SfM than with conventional photogrammetry. To test the functionality in a demanding environment, we applied SfM and conventional photogrammetry to archival aerial images from Zmuttgletscher, a mountain glacier in Switzerland, for nine dates between 1946 and 2005 using the most popular software packages, and compared the results regarding bundle adjustment and final DTM quality. The results suggest that by using SfM it is possible to produce DTMs of similar quality as with conventional photogrammetry. Higher point cloud density and less noise allow a higher ground resolution of the final DTM, and the time effort from the user is 3-6 times smaller, while the controls of the commercial software packages Agisoft PhotoScan (Version 1.2; Agisoft, St. Petersburg, Russia) and Pix4Dmapper (Version 3.0; Pix4D, Lausanne, Switzerland) are limited in comparison to ERDAS photogrammetry. SfM performs less reliably when few images with little overlap are processed. Even though SfM facilitates the largely automated production of high quality DTMs, the user is not exempt from a thorough quality check, at best with reference data where available. The resulting DTM time series revealed an average change in surface elevation at the glacier tongue of -67.0 ± 5.3 m. The spatial pattern of changes over time reflects the influence of flow dynamics and the melt of clean ice and that under debris cover. With continued technological advances, we expect to see an increasing use of SfM in glaciology for a variety of purposes, also in processing archival aerial imagery.
KW - Archival aerial images
KW - Digital terrain model
KW - Glacier elevation change
KW - High mountain terrain
KW - Stereo photogrammetry
KW - Structure-from-motion
U2 - 10.3390/rs9101021
DO - 10.3390/rs9101021
M3 - Article
AN - SCOPUS:85032866967
SN - 2072-4292
VL - 9
JO - Remote Sensing
JF - Remote Sensing
IS - 10
M1 - 1021
ER -