Projects per year
Abstract
Novel electrode scaffold materials based on chromium-rich spinets, such as MgMxCr2-xO4, = Li, Mg, Ti, Fe, Cu, Ga) have been investigated for solid oxide fuel cell (SOFC) applications, in terms of conductivity and chemical stability when operated in fuel environments. Cation distributions were obtained by Rietveld refinement from X-ray diffraction data (XRD), with cation site preference considered in agreement with literature, and correlated with electrical properties determined experimentally. The substitutions with cations such as Li and Cu on B site improved the conductivity of the materials in air, while introducing Fe and Ga in the structure led to a decrease in conductivity in air. However, Fe had a positive contribution under reducing conditions, generating a change in the conductivity mechanism from p-type in air, to n-type. Conductivity measurements indicated that MgFexCr2-xO4 spinets exhibit faster reduction kinetics, in comparison with other substituted cations at the B site which is desirable in fuel cell application, for a reasonably fast response of a cell or a stack to reach its full functional potential. MgFeCrO4 showed fast reduction kinetics, with increase of the conductivity in reducing conditions from 0.014 S cm-1 to 0.4 S cm-1 and equilibration time for reaching the maximum conductivity value of 10 hours, under dry 5% H2/Ar at 850 degrees °C.
Original language | English |
---|---|
Pages (from-to) | 18106-18114 |
Number of pages | 9 |
Journal | Journal of Materials Chemistry A |
Volume | 2 |
Issue number | 42 |
Early online date | 19 Sept 2014 |
DOIs | |
Publication status | Published - 14 Nov 2014 |
Keywords
- Anode materials
- SOFC anode
- Surface modification
- YSZ
- Performance
- Composite
- Transport
- Radii
- Ceria
- CR
Fingerprint
Dive into the research topics of 'Structure and properties of MgMxCr2-xO4 (M = Li, Mg, Ti, Fe, Cu, Ga) spinels for electrode supports in solid oxide fuel cells'. Together they form a unique fingerprint.Projects
- 3 Finished
-
Energy Materials Discovery: Energy Materials Discovery Characterisation and Application
Irvine, J. T. S. (PI), Cassidy, M. (CoI), Connor, P. A. (CoI), Savaniu, C. D. (CoI) & Zhou, W. (CoI)
7/01/13 → 6/01/18
Project: Standard
-
-
Material for high Temp FCT EP/E064248/1: Materials for High Temperature Fuel Cell Technology
Irvine, J. T. S. (PI), Cassidy, M. (CoI), Connor, P. A. (CoI), Savaniu, C. D. (CoI) & Tao, S. (CoI)
1/01/08 → 31/12/12
Project: Standard