TY - JOUR
T1 - Structure and lithium ion conductivity of garnet-like Li5La3Sb2O12 and Li6SrLa2Sb2O12
AU - Murugan, Ramaswamy
AU - Weppner, Werner
AU - Schmid-Beurmann, Peter
AU - Thangadurai, Venkataraman
PY - 2008/10/2
Y1 - 2008/10/2
N2 - Oxides with the nominal chemical compositions Li5La3Sb2O12 and Li6SrLa2Sb2O12 were prepared by solid-state reaction. The structures were refined by the Rietveld method using powder X-ray diffraction data. The synthesis of Li5La3Sb2O12 resulted in the well known garnet-related structure plus 5 wt.% of La2LiSbO6 in the bulk. In contrast to that, Li6SrLa2Sb2O12 could be synthesised in single garnet-related type phase. Lithium ion conductivities of Li5La3Sb2O12 and Li6SrLa2Sb2O12 were studied by the ac impedance method. The grain-boundary contribution to the total (bulk + grain-boundary) resistance is very small and about 5 and 3% for Li5La3Sb2O12 and Li6SrLa2Sb2O12, respectively, at 24 °C and decreases further with increase in temperature. Among the investigated compounds, Li5La3Sb2O12 exhibits the highest total (bulk + grain-boundary) and bulk ionic conductivity of 7.8 × 10-6 and 8.2 × 10-6 S cm-1, respectively, at 24 °C. The structural data indicate that the coupled substitution Li + Sr ⇒ La leads to a closure of the bottle neck like O-O distances of the shared edges of neighbouring Li octahedra and therefore reduces the mobility of Li ions in Li6SrLa2Sb2O12. Scanning electron microscope (SEM) images of the Li6SrLa2Sb2O12 compound revealed well crystallised large homogeneous grains (∼4.8 μm) and the grains were in good contact with the neighbouring grain, which leads to a smaller grain-boundary contribution to the total resistance.
AB - Oxides with the nominal chemical compositions Li5La3Sb2O12 and Li6SrLa2Sb2O12 were prepared by solid-state reaction. The structures were refined by the Rietveld method using powder X-ray diffraction data. The synthesis of Li5La3Sb2O12 resulted in the well known garnet-related structure plus 5 wt.% of La2LiSbO6 in the bulk. In contrast to that, Li6SrLa2Sb2O12 could be synthesised in single garnet-related type phase. Lithium ion conductivities of Li5La3Sb2O12 and Li6SrLa2Sb2O12 were studied by the ac impedance method. The grain-boundary contribution to the total (bulk + grain-boundary) resistance is very small and about 5 and 3% for Li5La3Sb2O12 and Li6SrLa2Sb2O12, respectively, at 24 °C and decreases further with increase in temperature. Among the investigated compounds, Li5La3Sb2O12 exhibits the highest total (bulk + grain-boundary) and bulk ionic conductivity of 7.8 × 10-6 and 8.2 × 10-6 S cm-1, respectively, at 24 °C. The structural data indicate that the coupled substitution Li + Sr ⇒ La leads to a closure of the bottle neck like O-O distances of the shared edges of neighbouring Li octahedra and therefore reduces the mobility of Li ions in Li6SrLa2Sb2O12. Scanning electron microscope (SEM) images of the Li6SrLa2Sb2O12 compound revealed well crystallised large homogeneous grains (∼4.8 μm) and the grains were in good contact with the neighbouring grain, which leads to a smaller grain-boundary contribution to the total resistance.
KW - A. Ceramics
KW - B. Oxides
KW - C. Impedance spectroscopy
KW - D. Energy storage
U2 - 10.1016/j.materresbull.2007.10.035
DO - 10.1016/j.materresbull.2007.10.035
M3 - Article
AN - SCOPUS:49049117383
SN - 0025-5408
VL - 43
SP - 2579
EP - 2591
JO - Materials Research Bulletin
JF - Materials Research Bulletin
IS - 10
ER -