The radiosensitivity of the human oocyte

W H B Wallace, A B Thomson, Thomas William Kelsey

Research output: Contribution to journalArticlepeer-review

Abstract

BACKGROUND: We determined the best model available for natural follicle decline in healthy women and used this to calculate the radiosensitivity of the human oocyte. METHODS: Ovarian failure was diagnosed in six patients with a median age of 13.2 years (range 12.5-16.0) who were treated with total body irradiation (14.4 Gy) at 11.5 years of age (4.9-15.1). We previously estimated the dose of radiation required to destroy 50% of the oocytes (LD50) to be <4 Gy. This estimate is an oversimplification, because decay represents an instantaneous rate of temporal change based upon the remaining population pool, expressed as a differential equation: dy/dx = -y[0.0595 + 3716/(11780 + y)], with initial value y(0) = 701 200. RESULTS: Solving the differential equation, we have estimated the number of follicles left after irradiation given as sol(51 - s + r), where r equals age at treatment, s equals age at diagnosis of ovarian failure, and 51 years is the average age of menopause. The surviving fraction of oocytes as a percentage is 100 times this value divided by sol(r). The mean surviving fraction for the six cases is 0.66%. We obtain a function, g(z), which decreases in value from 100% at zero dosage to mean value at dosage z = 14.4 Gy. We have g(z) = 10(mx+c), where c = log(10)100 = 2, and m = [log(10)(0.66) - c]/14.4. Solving g(z) = 50 gives an LD50 of 1-99. CONCLUSIONS: Based on new data and a revised mathematical model of natural oocyte decline, we have determined the surviving fraction of oocytes following irradiation and estimate the LD50 of the human oocyte to be <2 Gy.

Original languageEnglish
Pages (from-to)117-121
Number of pages5
JournalHuman Reproduction
Volume18
Issue number1
DOIs
Publication statusPublished - Jan 2003

Keywords

  • fertility
  • human oocyte
  • ovarian failure
  • radiotherapy
  • OVARIAN
  • CHILDHOOD
  • MENOPAUSE
  • IRRADIATION
  • LEUKEMIA

Fingerprint

Dive into the research topics of 'The radiosensitivity of the human oocyte'. Together they form a unique fingerprint.

Cite this