Projects per year
Abstract
We describe the use of symbolic algebraic computation allied with AI search techniques, applied to the problem of the identification, enumeration and storage of all monoids of order 9 or less. Our approach is novel, using computer algebra to break symmetry and constraint satisfaction search to find candidate solutions. We present new results in algebraic combinatorics: up to isomorphism and anti-isomorphism, there are 858,977 monoids of order 8 and 1,844,075,697 monoids of order 9.
Original language | English |
---|---|
Pages | 61-76 |
Publication status | Published - Jul 2008 |
Fingerprint
Dive into the research topics of 'The Monoids of Order Eight and Nine'. Together they form a unique fingerprint.Projects
- 1 Finished
-
EP/C523229/1: Multidisciplinary Critical Mass in Computational Algebra and Applications
Linton, S. A. (PI), Gent, I. P. (CoI), Leonhardt, U. (CoI), Mackenzie, A. (CoI), Miguel, I. J. (CoI), Quick, M. (CoI) & Ruskuc, N. (CoI)
1/09/05 → 31/08/10
Project: Standard