Abstract
We report on strongly temperature-dependent kinetics of negatively charged carrier complexes in asymmetric InAs/AlGaInAs/InP quantum dots (dashes) emitting at telecom wavelengths. The structures are highly elongated and of large volume, which results in atypical carrier confinement characteristics with s-p shell energy splittings far below the optical phonon energy, which strongly affects the phonon-assisted relaxation. Probing the emission kinetics with time-resolved microphotoluminescence from a single dot, we observe a strongly non-monotonic temperature dependence of the charged exciton lifetime. Using a kinetic rate-equation model, we find that a relaxation side-path through the excited charged exciton triplet states may lead to such behavior. This, however, involves efficient singlet-triplet relaxation via the electron spin-flip. Thus, we interpret the results as an indirect observation of strongly enhanced electron spin relaxation without a magnetic field, possibly resulting from atypical confinement characteristics.
Original language | English |
---|---|
Article number | 043103 |
Number of pages | 5 |
Journal | Applied Physics Letters |
Volume | 113 |
Issue number | 4 |
DOIs | |
Publication status | Published - 23 Jul 2018 |