Projects per year
Abstract
Studies of the dynamics of open quantum systems are limited by the large Hilbert space of typical environments, which is too large to be treated exactly. In some cases, approximate descriptions of the system are possible, for example when the environment has a short memory time or only interacts weakly with the system. Accurate numerical methods exist but these are typically restricted to baths with Gaussian correlations, such as non-interacting bosons. Here we present a method for simulating open quantum systems with arbitrary environments that consist of a set of independent degrees of freedom. Our approach automatically reduces the large number of environmental degrees of freedom to those which are most relevant. Specifically, we show how the process tensor describing the effect of the environment can be iteratively constructed and compressed using matrix product state techniques. We demonstrate the power of this method by applying it to a range of open quantum systems, including with bosonic, fermionic, and spin environments. The versatility and efficiency of our automated compression of environments method provides a practical general-purpose tool for open quantum systems.
Original language | English |
---|---|
Pages (from-to) | 662-668 |
Number of pages | 9 |
Journal | Nature Physics |
Volume | 18 |
Issue number | 6 |
Early online date | 24 Mar 2022 |
DOIs | |
Publication status | Published - Jun 2022 |
Fingerprint
Dive into the research topics of 'Simulation of open quantum systems by automated compression of arbitrary environments'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Understanding and engineering: Understanding and engineering dissipation in nanoscale quantum devices
Lovett, B. W. (PI) & Keeling, J. M. J. (CoI)
1/04/20 → 31/03/23
Project: Standard