Projects per year
Abstract
Context. Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations now show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. While this is the case, these observations are difficult to interpret in terms of basic physical mechanisms and quantities. To fully understand CMEs we need to compare equivalent quantities derived from both observations and theoretical models. This will aid in bridging the gap between observations and models.
Aims: To this end, we aim to produce synthesised AIA observations from simulations of a flux rope ejection. To carry this out we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME.
Methods: We perform a simulation where a flux rope is ejected from the solar corona. From the density and temperature of the plasma in the simulation we synthesise AIA observations. The emission is then integrated along the line of sight using the instrumental response function of AIA.
Results: We sythesise observations of AIA in the channels at 304 Å, 171 Å, 335 Å, and 94 Å. The synthesised observations show a number of features similar to actual observations and in particular reproduce the general development of CMEs in the low corona as observed by AIA. In particular we reproduce an erupting and expanding arcade in the 304 Å and 171 Å channels with a high density core.
Conclusions: The ejection of a flux rope reproduces many of the features found in the AIA observations. This work is therefore a step forward in bridging the gap between observations and models, and can lead to more direct interpretations of EUV observations in terms of flux rope ejections. We plan to improve the model in future studies in order to perform a more quantitative comparison.
Movies associated with Figs. 3, 9, and 10 are available in electronic form at http://www.aanda.org
Aims: To this end, we aim to produce synthesised AIA observations from simulations of a flux rope ejection. To carry this out we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME.
Methods: We perform a simulation where a flux rope is ejected from the solar corona. From the density and temperature of the plasma in the simulation we synthesise AIA observations. The emission is then integrated along the line of sight using the instrumental response function of AIA.
Results: We sythesise observations of AIA in the channels at 304 Å, 171 Å, 335 Å, and 94 Å. The synthesised observations show a number of features similar to actual observations and in particular reproduce the general development of CMEs in the low corona as observed by AIA. In particular we reproduce an erupting and expanding arcade in the 304 Å and 171 Å channels with a high density core.
Conclusions: The ejection of a flux rope reproduces many of the features found in the AIA observations. This work is therefore a step forward in bridging the gap between observations and models, and can lead to more direct interpretations of EUV observations in terms of flux rope ejections. We plan to improve the model in future studies in order to perform a more quantitative comparison.
Movies associated with Figs. 3, 9, and 10 are available in electronic form at http://www.aanda.org
Original language | English |
---|---|
Article number | A120 |
Number of pages | 10 |
Journal | Astronomy & Astrophysics |
Volume | 568 |
DOIs | |
Publication status | Published - Aug 2014 |
Keywords
- Sun: coronal mass ejections (CMEs)
- Sun: UV radiation
- Sun: filaments, prominences
- Sun: corona
- Sun: magnetic fields
- Magnetohydrodynamics (MHD)
Fingerprint
Dive into the research topics of 'Simulating AIA observations of a flux rope ejection'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Solar Magnetic Fields and Space Weather: Simulating Large Scale Solar Magnetic Fields Application to Space Weather
Mackay, D. H. (PI)
1/04/12 → 30/06/16
Project: Standard
-
EU FP7 SPACE call SWIFF: EU FP7 SPACE call SWIFF
Parnell, C. E. (PI)
1/02/11 → 31/01/14
Project: Standard