TY - JOUR
T1 - Silicon isotopes in granulite xenoliths
T2 - Insights into isotopic fractionation during igneous processes and the composition of the deep continental crust
AU - Savage, P.S.
AU - Georg, R.B.
AU - Williams, H.M.
AU - Halliday, A.N.
PY - 2013/3/1
Y1 - 2013/3/1
N2 - The silicon (Si) cycle is of great current interest but the isotopic composition of the continental crust has not been determined. Magmatic differentiation generates liquids with heavier Si and the lower crust, thought to be dominated by cumulates and restites, is predicted to have a light isotopic composition. This is borne out by the composition of many types of granite, which appear to have relative light Si for their silica content. Here we report the Si isotopic compositions of two granulite facies xenolith suites, from the Chudleigh and McBride volcanic provinces, Australia, providing new constraints on deep crustal processes and the average composition of the deep continental crust.The xenoliths display a range of isotopic compositions (δSi=-0.43‰ to -0.15‰) comparable to that measured previously for igneous rocks. The isotopic compositions of the McBride xenoliths reflect assimilation and fractional crystallisation (AFC) and/or partial melting processes. Silicon and O isotopes are correlated in the McBride suite and can be explained by AFC of various evolved parent melts. In contrast, the Chudleigh xenoliths have Si isotope compositions predominantly controlled by the specific mineralogy of individual cumulates. Using the xenolith data and a number of weighting methods, the Si isotope compositions of the lower and middle crust are calculated to be δSi=-0.29±0.04‰ (95% s.e.) and -0.23±0.04‰ (95% s.e.) respectively. These values are almost identical to the composition of the Bulk Silicate Earth, implying minimal isotope fractionation associated with continent formation and no light lower crustal reservoir.
AB - The silicon (Si) cycle is of great current interest but the isotopic composition of the continental crust has not been determined. Magmatic differentiation generates liquids with heavier Si and the lower crust, thought to be dominated by cumulates and restites, is predicted to have a light isotopic composition. This is borne out by the composition of many types of granite, which appear to have relative light Si for their silica content. Here we report the Si isotopic compositions of two granulite facies xenolith suites, from the Chudleigh and McBride volcanic provinces, Australia, providing new constraints on deep crustal processes and the average composition of the deep continental crust.The xenoliths display a range of isotopic compositions (δSi=-0.43‰ to -0.15‰) comparable to that measured previously for igneous rocks. The isotopic compositions of the McBride xenoliths reflect assimilation and fractional crystallisation (AFC) and/or partial melting processes. Silicon and O isotopes are correlated in the McBride suite and can be explained by AFC of various evolved parent melts. In contrast, the Chudleigh xenoliths have Si isotope compositions predominantly controlled by the specific mineralogy of individual cumulates. Using the xenolith data and a number of weighting methods, the Si isotope compositions of the lower and middle crust are calculated to be δSi=-0.29±0.04‰ (95% s.e.) and -0.23±0.04‰ (95% s.e.) respectively. These values are almost identical to the composition of the Bulk Silicate Earth, implying minimal isotope fractionation associated with continent formation and no light lower crustal reservoir.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84874503053&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2013.01.019
DO - 10.1016/j.epsl.2013.01.019
M3 - Article
AN - SCOPUS:84874503053
SN - 0012-821X
VL - 365
SP - 221
EP - 231
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
ER -