Projects per year
Abstract
The tempo and mode of evolution of loci with a large effect on adaptation and reproductive isolation will influence the rate of evolutionary divergence and speciation. Desaturase loci are involved in key biochemical changes in long-chain fatty acids. In insects, these have been shown to influence adaptation to starvation or desiccation resistance and in some cases act as important pheromones. The desaturase gene family of Drosophila is known to have evolved by gene duplication and diversification, and at least one locus shows rapid evolution of sex-specific expression variation. Here, we examine the evolution of the gene family in species representing the Drosophila phylogeny. We find that the family includes more loci than have been previously described. Most are represented as single-copy loci, but we also find additional examples of duplications in loci which influence pheromone blends. Most loci show patterns of variation associated with purifying selection, but there are strong signatures of diversifying selection in new duplicates. In the case of a new duplicate of desat1 in the obscura group species, we show that strong selection on the coding sequence is associated with the evolution of sex-specific expression variation. It seems likely that both sexual selection and ecological adaptation have influenced the evolution of this gene family in Drosophila.
Original language | English |
---|---|
Pages (from-to) | 3617-3630 |
Number of pages | 14 |
Journal | Molecular Ecology |
Volume | 20 |
Issue number | 17 |
DOIs | |
Publication status | Published - Sept 2011 |
Keywords
- desaturase
- Drosophila
- duplication
- expression variation
- PAML
- AMINO-ACID SITES
- DETECTING POSITIVE SELECTION
- MULTIPLE SEQUENCE ALIGNMENT
- CODON-SUBSTITUTION MODELS
- CUTICULAR HYDROCARBONS
- MOLECULAR EVOLUTION
- PREMATING ISOLATION
- COURTSHIP BEHAVIOR
- MATE RECOGNITION
- CLUSTAL-W
Fingerprint
Dive into the research topics of 'Signatures of selection and sex-specific expression variation of a novel duplicate during the evolution of the Drosophila desaturase gene family'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Genome wide associations with song: Genome-wide associations with song variation in a natural population of Drosophila melanogaster
Ritchie, M. G. (PI)
10/05/10 → 12/10/11
Project: Standard