Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy

J. Chris McKnight, Kimberley Bennett, Mathijs Bronkhorst, Debbie JF Russell, Steve Balfour, Ryan Milne, Matt Bivins, Simon Moss, Willy Colier, Ailsa J. Hall, Dave Thompson

Research output: Contribution to journalArticlepeer-review

Abstract

Investigation of marine mammal dive-by-dive blood distribution and oxygenation has been limited by a lack of non-invasive technology for use in freely diving animals. Here, we developed a non-invasive near-infrared spectroscopy (NIRS) device to measure relative changes in blood volume and haemoglobin oxygenation continuously in the blubber and brain of voluntarily diving harbour seals. Our results show that seals routinely exhibit preparatory peripheral vasoconstriction accompanied by increased cerebral blood volume approximately 15 s before submersion. These anticipatory adjustments confirm that blood redistribution in seals is under some degree of cognitive control that precedes the mammalian dive response. Seals also routinely increase cerebral oxygenation at a consistent time during each dive, despite a lack of access to ambient air. We suggest that this frequent and reproducible reoxygenation pattern, without access to ambient air, is underpinned by previously unrecognised changes in cerebral drainage. The ability to track blood volume and oxygenation in different tissues using NIRS will facilitate a more accurate understanding of physiological plasticity in diving animals in an increasingly disturbed and exploited environment.
Original languageEnglish
Article numbere3000306
Number of pages20
JournalPLoS Biology
Volume17
Issue number6
DOIs
Publication statusPublished - 18 Jun 2019

Fingerprint

Dive into the research topics of 'Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy'. Together they form a unique fingerprint.

Cite this