Abstract
Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tunedmirror2–4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor oftwo. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.
Original language | English |
---|---|
Article number | 99 |
Number of pages | 8 |
Journal | Light: Science & Applications |
Volume | 7 |
DOIs | |
Publication status | Published - 5 Dec 2018 |