Selenium isotopes record extensive marine suboxia during the Great Oxidation Event

Michael A. Kipp, Eva Elisabeth Stueeken, Andrey Bekker, Roger Buick

Research output: Contribution to journalArticlepeer-review

46 Citations (Scopus)


It has been proposed that an “oxygen overshoot” occurred during the early Paleoproterozoic Great Oxidation Event (GOE) in association with the extreme positive carbon isotopic excursion known as the Lomagundi Event. Moreover, it has also been suggested that environmental oxygen levels then crashed to very low levels during the subsequent extremely negative Shunga–Francevillian carbon isotopic anomaly. These redox fluctuations could have profoundly influenced the course of eukaryotic evolution, as eukaryotes have several metabolic processes that are obligately aerobic. Here we investigate the magnitude of these proposed oxygen perturbations using selenium (Se) geochemistry, which is sensitive to redox transitions across suboxic conditions. We find that δ82/78Se values in offshore shales show a positive excursion from 2.32 Ga until 2.1 Ga (mean +1.03 ± 0.67‰). Selenium abundances and Se/TOC (total organic carbon) ratios similarly show a peak during this interval. Together these data suggest that during the GOE there was pervasive suboxia in near-shore environments, allowing nonquantitative Se reduction to drive the residual Se oxyanions isotopically heavy. This implies O2 levels of >0.4 μM in these settings. Unlike in the late Neoproterozoic and Phanerozoic, when negative δ82/78Se values are observed in offshore environments, only a single formation, evidently the shallowest, shows evidence of negative δ82/78Se. This suggests that there was no upwelling of Se oxyanions from an oxic deep-ocean reservoir, which is consistent with previous estimates that the deep ocean remained anoxic throughout the GOE. The abrupt decline in δ82/78Se and Se/TOC values during the subsequent Shunga–Francevillian anomaly indicates a widespread decrease in surface oxygenation.
Original languageEnglish
Pages (from-to)875-880
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number5
Early online date17 Jan 2017
Publication statusPublished - 31 Jan 2017


  • Paleoproterozoic
  • Trace metals
  • Oxygen
  • Eukaryote evolution


Dive into the research topics of 'Selenium isotopes record extensive marine suboxia during the Great Oxidation Event'. Together they form a unique fingerprint.

Cite this