TY - JOUR
T1 - Selective activation of the ortho C?F bond in pentafluoropyridine by zerovalent nickel
T2 - Reaction via a metallophosphorane intermediate stabilized by neighboring group assistance from the pyridyl nitrogen
AU - Nova, Ainara
AU - Reinhold, Meike
AU - Perutz, Robin N.
AU - MacGregor, Stuart A.
AU - McGrady, John E.
PY - 2010/4/12
Y1 - 2010/4/12
N2 - Density functional theory is used to explore the origins of the chemoselectivity and regioselectivity of activation of C?F bonds in pentafluoropyridine with [Ni(PR3)2] species. Experimentally, Ni-fluoride species are observed and activation occurs preferentially at the 2-position (i.e., the C?F bond ortho to the pyridyl nitrogen). This is in marked contrast to related platinum reagents, which form Pt-alkyl species featuring fluorophosphine ligands with activation occurring exclusively at the 4-position. Using a model nickel complex, [Ni(PMe 3)2], computed potential energy surfaces reveal two distinct types of reaction pathways: conventional oxidative addition and phosphine-assisted C?F bond activation. In the latter, the activated fluorine is transferred first to the phosphine ligand before migrating to the metal center. The phosphine-assisted routes lie substantially above their oxidative addition counterparts unless activation occurs at the 2-position, where coordination of the pyridyl nitrogen stabilizes both the metallophosphorane intermediate and the preceding transition state. The result is a lowering of the barrier such that the phosphine-assisted route becomes competitive with conventional oxidative addition. This "neighboring group acceleration" is unique to the phosphine-assisted pathway and, moreover, is unique to activation at the 2-position because it depends on the ability of the nitrogen to participate in a benzyne-like, pyridin-1,2-diyl coordination mode.
AB - Density functional theory is used to explore the origins of the chemoselectivity and regioselectivity of activation of C?F bonds in pentafluoropyridine with [Ni(PR3)2] species. Experimentally, Ni-fluoride species are observed and activation occurs preferentially at the 2-position (i.e., the C?F bond ortho to the pyridyl nitrogen). This is in marked contrast to related platinum reagents, which form Pt-alkyl species featuring fluorophosphine ligands with activation occurring exclusively at the 4-position. Using a model nickel complex, [Ni(PMe 3)2], computed potential energy surfaces reveal two distinct types of reaction pathways: conventional oxidative addition and phosphine-assisted C?F bond activation. In the latter, the activated fluorine is transferred first to the phosphine ligand before migrating to the metal center. The phosphine-assisted routes lie substantially above their oxidative addition counterparts unless activation occurs at the 2-position, where coordination of the pyridyl nitrogen stabilizes both the metallophosphorane intermediate and the preceding transition state. The result is a lowering of the barrier such that the phosphine-assisted route becomes competitive with conventional oxidative addition. This "neighboring group acceleration" is unique to the phosphine-assisted pathway and, moreover, is unique to activation at the 2-position because it depends on the ability of the nitrogen to participate in a benzyne-like, pyridin-1,2-diyl coordination mode.
UR - http://www.scopus.com/inward/record.url?scp=77950841417&partnerID=8YFLogxK
U2 - 10.1021/om100064z
DO - 10.1021/om100064z
M3 - Article
AN - SCOPUS:77950841417
SN - 0276-7333
VL - 29
SP - 1824
EP - 1831
JO - Organometallics
JF - Organometallics
IS - 7
ER -