Projects per year
Abstract
Exciton-polariton condensates display a variety of intriguing pattern-forming behaviors, particularly when confined in potential traps. It has previously been predicted that triangular lattices of vortices of the same sign will form spontaneously as the result of surface instabilities in a harmonic trap. However, natural disorder, deviation of the external potential from circular symmetry, or higher-order terms modifying the dynamical equations may all have detrimental effects and destabilize the circular trajectories of vortices. Here we address these issues, by characterizing the robustness of the vortex lattice against disorder and deformations of the trapping potential. Since most experiments use time integrated measurements it would be hard to observe directly the rotating vortex lattices or distinguish them from vortex-free states. We suggest how these difficulties can be overcome and present an experimentally viable interference-imaging scheme that would allow the detection of rotating vortex lattices.
Original language | English |
---|---|
Article number | 035307 |
Number of pages | 11 |
Journal | Physical Review. B, Condensed matter and materials physics |
Volume | 86 |
Issue number | 3 |
DOIs | |
Publication status | Published - 9 Jul 2012 |
Fingerprint
Dive into the research topics of 'Robustness and observability of rotating vortex lattices in an exciton-polariton condensate'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Topological Protection and NonEquilibriu: Topological Protection and NonEquilibrium States in Strongly Correlated Electron Systems
Wahl, P. (PI), Baumberger, F. (CoI), Davis, J. C. (CoI), Green, A. (CoI), Hooley, C. (CoI), Keeling, J. M. J. (CoI) & Mackenzie, A. (CoI)
1/09/11 → 31/08/17
Project: Standard
-
Macroscopic quantum coherence: Macroscopic quantum coherence in non-equilibrium and driven quantum systems
Keeling, J. M. J. (PI)
1/09/10 → 31/03/14
Project: Fellowship