Projects per year
Abstract
Single phase polycrystalline BaZr0.3Ce0.5Y0.1Yb0.1O3 - δ electrolyte material was prepared by solid state reaction route. Rietveld analysis of the XRD data confirms the tetragonal sym¬metry in the I4/mcm space group with unit cell parameters of a = b = 6.0567(3) Å and c = 8.5831(5) Å. The addition ofZnO as a sintering additive was found to reduce the sintering temperature and enhance both overall sinterability and grain growth. Sintering temperature was reduced by 200–300 °C, and a very high relative density of about 98% was achieved at 1400 °C. Impedance spectroscopy in humidified 5% H2/Ar atmosphere shows that the protonic conductivity at 600 °C was 8.60 × 10−3 S cm−1. Thermal analysis performed in pure CO2 atmosphere shows very good chemical stability up to 1200 °C. Good biaxial flexure strength of 100–200 MPa was reported which makes this material a promising electrolyte material for intermediate temperature solid oxide fuel cells (IT-SOFCs).
Original language | English |
---|---|
Pages (from-to) | 2387-2396 |
Number of pages | 10 |
Journal | Ionics |
Volume | 23 |
Issue number | 9 |
Early online date | 10 Apr 2017 |
DOIs | |
Publication status | Published - Sept 2017 |
Keywords
- Perovskites
- Proton conductor
- SOFC
- Electrochemical characterization
- Crystal structure
Fingerprint
Dive into the research topics of 'Robust doped BaCeO3-δ electrolyte for IT-SOFCs'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Energy Materials Discovery: Energy Materials Discovery Characterisation and Application
Irvine, J. T. S. (PI), Cassidy, M. (CoI), Connor, P. A. (CoI), Savaniu, C. D. (CoI) & Zhou, W. (CoI)
7/01/13 → 6/01/18
Project: Standard
-
Royal Society Wolfson Merit Award: Closing the Carbon Cycle with Solid State Electrochemistry
Irvine, J. T. S. (PI)
1/08/12 → 31/07/17
Project: Standard